this post was submitted on 08 Dec 2024
461 points (95.3% liked)

Technology

59993 readers
3177 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
461
The GPT Era Is Already Ending (www.theatlantic.com)
submitted 1 week ago* (last edited 1 week ago) by [email protected] to c/[email protected]
 

If this is the way to superintelligence, it remains a bizarre one. “This is back to a million monkeys typing for a million years generating the works of Shakespeare,” Emily Bender told me. But OpenAI’s technology effectively crunches those years down to seconds. A company blog boasts that an o1 model scored better than most humans on a recent coding test that allowed participants to submit 50 possible solutions to each problem—but only when o1 was allowed 10,000 submissions instead. No human could come up with that many possibilities in a reasonable length of time, which is exactly the point. To OpenAI, unlimited time and resources are an advantage that its hardware-grounded models have over biology. Not even two weeks after the launch of the o1 preview, the start-up presented plans to build data centers that would each require the power generated by approximately five large nuclear reactors, enough for almost 3 million homes.

https://archive.is/xUJMG

top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 259 points 1 week ago (16 children)

"Shortly thereafter, Altman pronounced “the dawn of the Intelligence Age,” in which AI helps humankind fix the climate and colonize space."

Few things ring quite as blatantly false to me as this asinine claim.

The notion that AI will solve the climate crisis is unbelievably stupid, not because of any theory about what AI may or may not be capable of, but because we already know how to fix the climate crisis!

The problem is that we're putting too much carbon into the air. The solution is to put less carbon into the air. The greatest minds of humanity have been working on this for over a century and the basic answer has never, ever changed.

The problem is that we can't actually convince people to stop putting carbon into air, because that would involve reducing profit margins, and wealthy people don't like that.

Even if Altman unveiled a true AGI tomorrow, one smarter than all of humanity put together, and asked it to solve the climate crisis, it would immediately reply "Stop putting carbon in the air you dumb fucking monkeys." And the billionaires who back Altman would immediately tell him to turn the damn thing off.

[–] [email protected] 44 points 1 week ago (1 children)

AI is actively worsening the climate crisis with its obscene compute requirements and concomitant energy use.

[–] [email protected] 16 points 1 week ago

If I remember correctly, the YT channel ASAPScience said that making 10-15 queries on ChatGPT consumes 500mL of water on cooling down the servers alone. That's how much fresh water is needed to stop the machine from over heating alone.

[–] [email protected] 27 points 1 week ago* (last edited 1 week ago) (1 children)

That's the best case scenario. A more likely response would be to realize that humans need the earth, but AGI needs humans for a short while, and the earth doesn't need humans at all

[–] [email protected] 7 points 1 week ago (9 children)

It’s hard to talk about what the earth needs. For humans and AGI, the driving requirement behind “need” is survival. But the earth is a rock. What does a rock need?

[–] [email protected] 8 points 1 week ago

Plastic, apparently

load more comments (8 replies)
[–] [email protected] 10 points 1 week ago* (last edited 1 week ago)

The notion that AI will solve the climate crisis is unbelievably stupid, not because of any theory about what AI may or may not be capable of, but because we already know how to fix the climate crisis!

Its a political problem. Nationalizing the western oil companies to prevent them from lobbying, and to invest their profits in renewables, is a solution, but no party in the CIA Overton window would support it. If war and human suffering can be made a priority over human sustainability, then oil lobbyists will promote war.

load more comments (13 replies)
[–] [email protected] 70 points 1 week ago (4 children)

The GPT Era Is Already Ending

Had it begun? Alls I saw was a frenzy of idiot investment cheered on shamelessly by hypocritical hypemen.

[–] [email protected] 24 points 1 week ago

Oh, I saw a ton of search results feed me to worthless ai generated vomit. It definitely changed things.

load more comments (3 replies)
[–] [email protected] 68 points 1 week ago (8 children)

How is it useful to type millions of solutions out that are wrong to come up with the right one? That only works on a research project when youre searching for patterns. If you are trying to code, it needs to be right the first time every time it's run, especially if it's in a production environment.

[–] [email protected] 52 points 1 week ago (1 children)

It's not.

But lying lets them defraud more investors.

load more comments (1 replies)
[–] [email protected] 6 points 1 week ago (2 children)

Well actually there's ways to automate quality assurance.

If a programmer reasonably knew that one of these 10,000 files was the "correct" code, they could pull out quality assurance tests and find that code pretty dang easily, all things considered.

Those tests would eliminate most of the 9,999 wrong ones, and then the QA person could look through the remaining ones by hand. Like a capcha for programming code.

The power usage still makes this a ridiculous solution.

[–] [email protected] 33 points 1 week ago

If you first have to write comprehensive unit/integration tests, then have a model spray code at them until it passes, that isn't useful. If you spend that much time writing perfect tests, you've already written probably twice the code of just the solution and reasonable tests.

Also you have an unmaintainable codebase that could be a hairball of different code snippets slapped together with dubious copyright.

Until they hit real AGI this is just fancy auto complete. With the hype they may dissuade a whole generation of software engineers picking a career today. If they don't actually make it to AGI it will take a long time to recover and humans who actually know how to fix AI slop will make bank.

[–] [email protected] 15 points 1 week ago (9 children)

That seems like an awful solution. Writing a QA test for every tiny thing I want to do is going to add far more work to the task. This would increase the workload, not shorten it.

load more comments (9 replies)
load more comments (6 replies)
[–] [email protected] 51 points 1 week ago* (last edited 1 week ago) (24 children)

a million monkeys typing for a million years generating the works of Shakespeare

FFS, it's one monkey and infinite years. This is the second time I've seen someone make this mistake in an AI article in the past month or so.

[–] [email protected] 31 points 1 week ago* (last edited 1 week ago) (1 children)

FFS, it’s one monkey and infinite years.

it is definitely not that long. we already had a monkey generating works of shakespeare. its name was shakespeare and it did not take longer than ~60 million years

[–] [email protected] 15 points 1 week ago* (last edited 1 week ago)

A million isn't even close.
There's about a few million characters in shakespeares works. That means the chance of typing it randomly is very conservatively 1 in 26^1000000^

if a monkey types a million characters a week the amount of "attempts" a million monkeys makes in a million years is somewhere in the order of 52000000*1000000*1000000 = 5.2 × 10^19^

The difference is hillriously big. Like, if we multiply both the monkey amount and the number of years by the number of atoms in the knowable universe it still isn't even getting close.

load more comments (22 replies)
[–] [email protected] 47 points 1 week ago (4 children)

I’ve been playing around with AI a lot lately for work purposes. A neat trick llms like OpenAI have pushed onto the scene is the ability for a large language model to “answer questions” on a dataset of files. This is done by building a rag agent. It’s neat, but I’ve come to two conclusions after about a year of screwing around.

  1. it’s pretty good with words - asking it to summarize multiple documents for example. But it’s still pretty terrible at data. As an example, scanning through an excel file log/export/csv file and asking it to perform a calculation “based on this badge data, how many people and who is in the building right now”. It would be super helpful to get answers to those types of questions-but haven’t found any tool or combinations of models that can do it accurately even most of the time. I think this is exactly what happened to spotify wrapped this year - instead of doing the data analysis, they tried to have an llm/rag agent do it - and it’s hallucinating.
  2. these models can be run locally and just about as fast. Ya it takes some nerd power to set these up now - but it’s only a short matter of time before it’s as simple as installing a program. I can’t imagine how these companies like ChatGPT are going to survive.
[–] [email protected] 46 points 1 week ago (2 children)

This is exactly how we use LLMs at work... LLM is trained on our work data so it can answer questions about meeting notes from 5 years ago or something. There are a few geniunely helpful use cases like this amongst a sea of hype and mania. I wish lemmy would understand this instead of having just a blanket policy of hate on everything AI

the spotify thing is so stupid... There is simply no use case here for AI. Just spit back some numbers from my listening history like in the past. No need to have AI commentary and hallucination

The even more infuriating part of all this is that i can think of ways that AI/ML (not necesarily LLMs) could actually be really useful for spotify. Like tagging genres, styles, instruments, etc.... "Spotify, find me all songs by X with Y instrument in them..."

[–] [email protected] 43 points 1 week ago* (last edited 1 week ago)

The problem is that the actual use cases (which are still incredibly unreliable) don't justify even 1% of the investment or energy usage the market is spending on them. (Also, as you mentioned, there are actual approaches that are useful that aren't LLMs that are being starved by the stupid attempt at a magic bullet.)

It's hard to be positive about a simple, moderately useful technology when every person making money from it is lying through their teeth.

load more comments (1 replies)
[–] [email protected] 13 points 1 week ago (2 children)

I think this is exactly what happened to spotify wrapped this year - instead of doing the data analysis, they tried to have an llm/rag agent do it - and it’s hallucinating.

Interesting - I don't use Spotify anymore, but I overheard a conversation on the train yesterday where some teens were complaining about the results being super weird, and they couldn't recognize themselves in it at all. It seems really strange to me to use LLMs for this purpose, perhaps with the exception of coming up with different ways of formulating the summary sentences so that it feels more unique. Showing the most played songs and artists is not really a difficult analysis task that does not require any machine learning. Unless it does something completely different over the past two years since I got my last one...

[–] [email protected] 13 points 1 week ago

They are using LLM's because the companies are run by tech bros who bet big on "AI" and now have to justify that.

load more comments (1 replies)
load more comments (2 replies)
[–] [email protected] 42 points 1 week ago* (last edited 1 week ago) (7 children)

It's a great article IMO, worth the read.

But :

“This is back to a million monkeys typing for a million years generating the works of Shakespeare,”

This is such a stupid analogy, the chances for said monkeys to just match a single page any full page accidentally is so slim, it's practically zero.
To just type a simple word like "stupid" which is a 6 letter word, and there are 25⁶ combinations of letters to write it, which is 244140625 combinations for that single simple word!
A page has about 2000 letters = 7,58607870346737857223e+2795 combinations. And that's disregarding punctuation and capital letters and special charecters and numbers.
A million monkeys times a million years times 365 days times 24 hours times 60 minutes times 60 seconds times 10 random typos per second is only 315360000000000000000 or 3.15e+20 combinations assuming none are repaeated. That's only 21 digits, making it 2775 digits short of creating a single page even once.

I'm so sick of seeing this analogy, because it is missing the point by an insane margin. It is extremely misleading, and completely misrepresenting getting something very complex right by chance.

To generate a work of Shakespeare by chance is impossible in the lifespan of this universe. The mathematical likelihood is so staggeringly low that it's considered impossible by AFAIK any scientific and mathematical standard.

[–] [email protected] 29 points 1 week ago (16 children)

the actual analog isn't a million monkeys. you only need one monkey. but it's for an infinite amount of time. the probability isn't practically zero, it's one. that's how infinity works. not only will it happen, but it will happen again, infinitely many times.

load more comments (16 replies)
[–] [email protected] 26 points 1 week ago* (last edited 1 week ago) (2 children)

The quote is misquoting the analogy. It is an infinite number of monkeys.

The point of the analogy is about randomness and infinity. Any page of gibberish is equally as likely as a word perfect page of Shakespeare given equal weighting to the entry if characters. There are factors introduced with the behaviours of monkeys and placement of keys, but I don't think that is the point of the analogy.

load more comments (2 replies)
[–] [email protected] 10 points 1 week ago (3 children)

In the meantime weasel programs are very effective, and a better, if less known metaphor.

Sadly the monkeys thought experiment is a much more well known example.

Irrelevant nerd thought, back in the early nineties, my game development company was Monkey Mindworks based on a joke our (one) programmer made about his method of typing gibberish into the editor and then clearing the parts that didn't resemble C# code.

load more comments (3 replies)
[–] [email protected] 10 points 1 week ago

I hear you. My fucking dog keeps barking up stupid Mexican novellas and Korean pop. C'mon Rosco! Go get me the stick buddy! The stick! No! C'mon! The cat didn't kill your father and then betray you for the chicken!!! Nobody likes your little dance that you do either, you do it because you sick in the brain for the Korean Ladies! Get otta here!

load more comments (3 replies)
[–] [email protected] 28 points 1 week ago (1 children)

Yesterday, alongside the release of the full o1, OpenAI announced a new premium tier of subscription to ChatGPT that enables users, for $200 a month (10 times the price of the current paid tier), to access a version of o1 that consumes even more computing power—money buys intelligence.

We poors are going to have to organize and make best use of our human intelligence to form an effective resistance against corporate rule. Or we can see where this is going.

[–] [email protected] 32 points 1 week ago (1 children)

The thing I'm heartened by is that there is a fundamental misunderstanding of LLMs among the MBA/"leadership" group. They actually think these models are intelligent. I've heard people say, "Well, just ask the AI," meaning asking ChatGPT. Anyone who actually does that and thinks they have a leg up are insane and kidding themselves. If they outsource their thinking and coding to an LLM, they might start getting ahead quickly, but they will then fall behind just as quickly because the quality will be middling at best. They don't understand how to best use the technology, and they will end up hanging themselves with it.

At the end of the day, all AI is just stupid number tricks. They're very fancy, impressive number tricks, but it's just a number trick that just happens to be useful. Solely relying on AI will lead to the downfall of an organization.

[–] [email protected] 13 points 1 week ago (4 children)

If they outsource their thinking and coding to an LLM, they might start getting ahead quickly

As a programmer I have yet to see evidence that LLMs can even achieve that. So far everything they product is a mess that needs significant effort to fix before it even does what was originally asked of the LLM unless we are talking about programs that have literally been written already thousands of times (like Hello World or Fibonacci generators,...).

load more comments (4 replies)
[–] [email protected] 27 points 1 week ago (4 children)

We're hitting the end of free/cheap innovation. We can't just make a one-time adjustment to training and make a permanent and substantially better product.

What's coming now are conventionally developed applications using LLM tech. o1 is trying to fact-check itself and use better sources.

I'm pretty happy it's slowing down right at this point.

I'd like to see non-profit open systems for education. Let's feed these things textbooks and lectures. Model the teaching after some of our best minds. Give individuals 1:1 time with a system 24x7 that they can just ask whatever they want and as often as they want and have it keep track of what they know and teach them the things that they need to advance. .

load more comments (4 replies)
[–] [email protected] 22 points 1 week ago

"In OpenAI’s early tests, scaling o1 showed diminishing returns: Linear improvements on a challenging math exam required exponentially growing computing power."

Sounds like most other drugs, too.

[–] [email protected] 11 points 1 week ago (1 children)

I mean after reading the article, I'm still unsure how this makes ChatGPT any better at the things I've found it to be useful for. Proofreading, generating high level overview of well-understood topics, and asking it goofy questions, for instance. If it is ever gonna be a long-term thing, "AI" needs to have useful features at a cost people are willing to pay, or be able to replace large numbers of workers without significant degredation in quality of work. This new model appears to be more expensive without being either of those other things and is therefore a less competitive product.

load more comments (1 replies)
[–] [email protected] 8 points 1 week ago (5 children)

People writing off AI because it isn’t fully replacing humans. Sounds like writing off calculators because they can’t work without human input.

Used correctly and in the right context, it can still significantly increase productivity.

[–] [email protected] 11 points 1 week ago (2 children)

Except it has gotten progressively worse as a product due to misuse, corporate censorship of the engine and the dataset feeding itself.

load more comments (2 replies)
load more comments (4 replies)
[–] [email protected] 8 points 1 week ago
[–] [email protected] 7 points 1 week ago

Interesting article. It’s sad to think there will be a wealth gap in accessing these technologies as they are behind paywall.

[–] [email protected] 7 points 1 week ago

The monkey's typing and generating Shakespeare is supposed to show the ridiculousness of the concept of infinity. It does not mean it would happen in years, or millions of years, or billions, or trillions, or... So unless the "AI" can move outside the flow of time and take an infinite amount of time and also then has a human or other actual intelligence to review every single result to verify when it comes up with the right one...yeah, not real...this is what happens when we give power to people with no understanding of the problem much less how to solve it. They come up with random ideas from random slivers of information. Maybe in an infinite amount of time a million CEOs could make a longterm profitable company.

load more comments
view more: next ›