this post was submitted on 12 Jul 2024
342 points (93.0% liked)

Technology

58303 readers
2285 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
all 50 comments
sorted by: hot top controversial new old
[–] [email protected] 217 points 4 months ago (1 children)

He's being misquoted by the headline. He FEARS that it will make the same mistakes. Let's be clear about RISC is here in the first place: an open-source hardware architecture. Anyone with enough money and willpower to fork it for their needs will do so. It's anyone's game still. He's just simply saying that the same type of people who took over ARM and x86 are doomed to make the same mistakes. Not that RISC-V is bad.

[–] bitfucker 2 points 4 months ago (1 children)

I'm being pedantic here but RISC-V is not a hardware architecture as in something that you can send to a manufacturer and get it made. It is an ISA. How you implement those ISA is up to you. Yes there are open implementations but I think it is important to distinguish it.

[–] [email protected] 1 points 4 months ago (1 children)
[–] bitfucker 2 points 4 months ago* (last edited 4 months ago)

So does x86. The difference is license. Just like how Intel and AMD have a VERY different design (implementation) as of now, so does RISC-V. Any vendor can implement it however they want, but they won't have to pay anyone for using RISC-V ISA

[–] [email protected] 76 points 4 months ago (3 children)

Anyone willing to summarize those mistakes here, for those who can't watch the video rn?

[–] [email protected] 134 points 4 months ago* (last edited 4 months ago) (1 children)

He doesn't list what the mistakes will be. He said that he fears that because hardware people aren't software people, that they will make the same mistakes that x86 made, which were then made by Arm later.

He did mention that fixing those mistakes was faster for Arm than x86, so that brings hope that fixing the mistakes on Risc V will take less time

[–] [email protected] 27 points 4 months ago* (last edited 4 months ago) (2 children)

I think it was something with instruction sets? Pretty sure i read something about this months ago.

[–] [email protected] 6 points 4 months ago (2 children)

No, it was about the prediction engines that contain security vulnerabilities. Problem is that software has no control over that, because hardware does future predictions for performance optimization.

[–] [email protected] 1 points 4 months ago

Prediction is a hard problem when coupled with caches. It relatively easy to say that no speculative instruction has any effect until it's confirmed taken if you ignore caches. However caches need to fetch information from memory to allow an instruction to evaluate, and rewinding a cache to it's previous state on a mispredict is almost impossible. Especially when you consider that the amount of time you're executing non-speculative code on a modern processor is very low.

Not having predictions is consigning yourself to 1990s performance, with faster clocks.

[–] [email protected] 1 points 4 months ago

Aah, right, that.

[–] [email protected] 4 points 4 months ago

I mean, that's all chip architectures are, so yes.

[–] [email protected] 23 points 4 months ago* (last edited 4 months ago)

Basically, his concern is that if they are not cooperating with software engineers that the product won't be able to run AAA games.

It's more of a warning than a prediction.

[–] [email protected] 11 points 4 months ago (2 children)

Instruction creep maybe? Pretty sure I've also seen stuff that seems to show that Torvalds is anti-speculative-execution due to its vulnurabilities, so he could also be referring to that.

[–] [email protected] 4 points 4 months ago (1 children)

Counterintuitive but more instructions are usually better. It enables you (but let's be honest the compiler) to be much more specific which usually have positive performance implications for minimal if any binary size. Take for example SIMD which is hyper specific math operations on large chunks of data. These instructions are extremely specific but when properly utilized have huge performance improvements.

[–] [email protected] 1 points 4 months ago

I understand some instruction expansions today are used to good effect in x86, but that there are also a sizeable number of instructions that are rarely utilized by compilers and are mostly only continuing to exist for backwards compatibility. That does not really make me think "more instructions are usually better". It makes me think "CISC ISAs are usually bloated with unused instructions".

My whole understanding is that while more specific instruction options do provide benefits, the use-cases of these instructions make up a small amount of code and often sacrifice single-cycle completion. The most commonly cited benefit for RISC is that RISC can complete more work (measured in 'clockcycles per program' over 'clockrate') in a shorter cyclecount, and it's often argued that it does so at a lower energy cost.

I imagine that RISC-V will introduce other standards in the future (hopefully after it's finalized the ones already waiting), hopefully with thoroughly thought out instructions that will actually find regular use.

I do see RISC-V proponents running simulated benchmarks showing RISC-V is more effective. I have not seen anything similar from x86 proponents, who usually either make general arguments, or worse , just point at the modern x86 chips that have decades of research, funding, and design behind them.

Overall, I see alot of doubt that ISAs even matter to performance in any significant fashion, and I believe it for performance at the GHz/s level of speed.

[–] [email protected] 1 points 4 months ago

This is probably correct.

[–] [email protected] 66 points 4 months ago (4 children)

smells like linus thinks there is going to be an ever increasing tech debt, and honestly, i think i agree with him on that one.

RISCV is likely going to eventually overstep it's role in someplaces, and bits and pieces of it will become archaic over time.

The gap between hardware and software level abstraction is huge, and that's really hard to fill properly. You just need a strict design criteria to get around that one.

I'm personally excited to see where RISCV goes, but maybe what we truly need is a universal software level architecture that can be used on various different CPU architectures providing maximum flexibility.

[–] [email protected] 40 points 4 months ago (3 children)

but maybe what we truly need is a universal software level architecture that can be used on various different CPU architectures providing maximum flexibility.

I think that's called Java.

[–] [email protected] 13 points 4 months ago
[–] ICastFist 2 points 4 months ago (1 children)

Then again, if you don't have the JVM/JRE, Java won't work, so first you need to write it in another language and in such a way that it works across a bunch of different ARM and x86 processors.

[–] [email protected] 2 points 4 months ago (1 children)

I don't know, if your platform doesn't have a jre... Is it really a platform?

[–] ICastFist 2 points 4 months ago

Dunno, would you consider the Xbox or Playstation platforms?

[–] [email protected] 0 points 4 months ago (1 children)

but but, minecraft in java bad and stinky??

[–] [email protected] 9 points 4 months ago (1 children)

But Java is the good version of Minecraft...

[–] [email protected] 3 points 4 months ago

unfortunately, you're aren't wrong.

[–] arality 15 points 4 months ago (1 children)

software level architecture that can be used on various different CPU architectures providing maximum flexibility.

I've only done a little bare metal programming, but I really don't see how this is possible. Everything I've used is so vastly different, I think it would be impossible to create something like that, and have it work well.

[–] [email protected] 2 points 4 months ago* (last edited 4 months ago) (1 children)

theoretically you could do it by defining an architecture operations standard, and then adhering to that somewhat when designing a CPU. While providing hardware flexibility as you could simply, not implement certain features, or implement certain other features. Might be an interesting idea.

That or something that would require minimal "instruction translation" between different architectures.

It's like x86. except if most of the features were optional.

[–] [email protected] 2 points 4 months ago (1 children)

It sounds like you're just reinventing either the JVM (runtime instruction translation), compilers (LLVM IR), or something in between (JIT interpreters).

The problem is that it's a hard problem to solve generally without expensive tradeoffs:

  • interpreter like JVM - will always have performance overhead and can't easily target arch-specific optimizations like SIMD
  • compiler - need a separate binary per arch, or have large binaries that can do multiple
  • JIT - runtime cost to compiling optimizations

Each is fine and has a use case, but I really don't think we need a hardware agnostic layer, we just need languages that help alleviate issues with different architectures. For example, Rust's ownership model may help prevent bugs that out of order execution may expose. It could also allow programmers to specify more strict limits on types (e.g. non-zero numbers, for example), which could aid arch-specific optimizations).

[–] [email protected] 1 points 4 months ago

yeah pretty much. The JVM but marginally less skill issued lol.

[–] [email protected] 7 points 4 months ago

universal software level architecture that can be used on various different CPU

Oh we already have dozens of those haha

[–] [email protected] 1 points 4 months ago (1 children)

overstep its* role in some places

[–] [email protected] 2 points 4 months ago

username checks out

[–] [email protected] 30 points 4 months ago (1 children)

Well regardless, the world needs alternatives that are outside of restrictive US patent law and large monopolistic control. Thank god for pioneers:)

[–] [email protected] 20 points 4 months ago (1 children)

ARM Inc is an English company owned by a Japanese company

[–] [email protected] 2 points 4 months ago

Pretty sure it's a plc, not and Inc.

[–] [email protected] 13 points 4 months ago (1 children)

RISC-V is the only shot we have at usable open source hardware. I really, really hope it takes off.

[–] [email protected] 4 points 4 months ago (1 children)

Whilst some open source implementations exist, RISC-V is not open source. It's an open standard. i.e. there's no license fee to implement it.

[–] [email protected] 2 points 4 months ago (1 children)

I didn't know that I thought all RISC-V was open source :( I'm not as familiar with it as I'd like to be. I might just have to dive into it more and change that soon

[–] [email protected] 1 points 4 months ago

I didn’t know that I thought all RISC-V was open source :(

If RISC-V was under some copyleft license where chip designs would have to be made open source, nobody from the chip industry would support RISC-V. They want "kinda like ARM but without licensing fees".

[–] [email protected] 9 points 4 months ago (1 children)

Even if that happens, still open sauce

[–] [email protected] 2 points 4 months ago

Not really? I mean, only partially.

[–] [email protected] 6 points 4 months ago* (last edited 4 months ago) (3 children)

It's open source nature protects against that. People mistake Linus as being in the same boat as Stallman but Linus was only open source by circumstance, he kind infamously doesn't seem to appreciate the role open source played in his own success.

It already directly addresses the mistakes of x86 and ARM. I don't know what he is so worried about.

[–] [email protected] 16 points 4 months ago (1 children)

Only the core part of the ISA is open source. Vendors are free to add whatever proprietary extensions they want and sell the resulting CPU.

You might get such a CPU to boot, but getting all functionality might be the same fight it is with arm CPUs currently.

[–] [email protected] -1 points 4 months ago

I'll say to you what I said to the other commentor: RISC-V is an ISA, nothing less, nothing more, and it is 100% open-source. It is not trying to be anything else. Yes, hardware implementations from processor vendors can have different licensing and be proprietary, but that is not the fault of RISC-V, nor does that have anything else to do with it. RISC-V, as an ISA, and only an ISA, is completely open-source and not liable for the bs of OEMs.

[–] [email protected] 12 points 4 months ago* (last edited 4 months ago)

Protects against what?

What I read here is just a vague critic from him of the relation between hard- and software developer. Which will not change just because the ISA is open source. It will take some iterations until this is figured out, this is inevevable.

Soft- and hardware developers are experts in their individual fields, there are not many with enough know-how of both fields to be effective.

Linus also points out, that because of ARM before, RISC-V might have a easier time, on the software side, but mistakes will still happen.

IMO, this article doesn't go into enough depths of the RISC-V specific issues, that it warrants RISC-V in the title, it would apply to any up and coming new ISA.

[–] [email protected] 1 points 4 months ago

Its* open-source nature

[–] [email protected] 2 points 4 months ago

Maybe, but the point is that it's open. There's a much higher chance that one of the companies that builds parts will make good decisions.