this post was submitted on 13 Sep 2024
53 points (94.9% liked)
Programming
17369 readers
450 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
In Ada? No dependent types, you just declare how to handle overflow, like declaring int16 vs int32 or similar. Dependent types means something entirely different and they are checked at compile time. SPARK uses something more like Hoare logic. Regular Ada uses runtime checks.
Whatever you want to call them, my point is that most languages, including Rust, don't have a way to define new integer types that are constrained by user-provided bounds.
Dependent types, as far as I'm aware, aren't defined in terms of "compile time" versus "run time"; they're just types that depend on a value. It seems to me that constraining an integer type to a specific range of values is a clear example of that, but I'm not a type theory expert.
Dependent types only make sense in the context of static typing, i.e. compile time. In a dependently typed language, if you have a term with type {1,2,3,4,5,6,7} and the program typechecks at compile time, you are guaranteed that there is no execution path through which that term takes on a value outside that set. You may need to supply a complicated proof to help the compiler.
In Ada you can define an integer type of range 1..7 and it is no big deal. There is no static guarantee like dependent types would give you. Instead, the runtime throws an exception if an out-of-range number gets sent there. It's simply a matter of the compiler generating extra code to do these checks.
There is a separate Ada-related tool called SPARK that can let you statically guarantee that the value stays in range. The verification method doesn't involve dependent types and you'd use the tool somewhat differently, but the end result is similar.
For what it's worth, Ada and Spark are listed separately in the Wiki article on dependent typing. Again, though, I'm not a language expert.
I'll look at the wiki article again but I can pretty much promise that Ada doesn't have dependent types. They are very much a bleeding edge language feature (Haskell will get them soon, so I will try using them then) and Ada is quite an old fashioned language, derived from Pascal. SPARK is basically an extra-safe subset of Ada with various features disabled, that is also designed to work with some verification tools to prove properties of programs. My understanding is that the proof methods don't involve dependent types, but maybe in some sense they do.
Dependent types require the type system to literally be Turing-complete, so you can have a type like "prime number" and prove number-theoretic properties of functions that operate on them. Apparently that is unintentionally possible to do with C++ template metaprogramming, so C++ is listed in the article, but actually trying to use C++ that way is totally insane and impractical.
I remember looking at the wiki article on dependent types a few years ago and finding it pretty bad. I've been wanting to read "The Little Typer" (thelittletyper.com) which is supposed to be a good intro. I've also played with Agda a little bit, but not used it for real.