this post was submitted on 05 Dec 2024
26 points (100.0% liked)

Advent Of Code

979 readers
22 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 5: Print Queue

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

top 50 comments
sorted by: hot top controversial new old
[–] Hammerheart 1 points 1 day ago* (last edited 1 day ago)

Python

(Part 1) omg I can't believe this actually worked first try!

with open('input') as data:
    parts = data.read().rstrip().split("\n\n")
    ordering_rules = parts[0].split("\n")
    updates = parts[1].split("\n")

correct_updates = []
middle_updates = []

def find_relevant_rules(pg_num: str, rules: list[str]) -> list[str] | None:
    for rule in rules:
        return list(filter(lambda x: x.split("|")[0] == pg_num, rules))

def interpret_rule(rule: str) -> list[str]:
    return rule.split("|")

def interpret_update(update: str) -> list[str]:
    return update.split(",")

def find_middle_update_index(update: list[str]) -> int:
    num_of_elements = len(update)
    return num_of_elements // 2

for update in updates:
    is_correct = True
    for i, page in enumerate(interpret_update(update)):
       rules_to_check = find_relevant_rules(page, ordering_rules) 
       for rule in rules_to_check:
           if rule.split("|")[1] in interpret_update(update)[:i]:
               is_correct = False
    if is_correct:
        correct_updates.append(update)

for update in correct_updates:
    split_update = update.split(",")
    middle_updates.append(int(split_update[find_middle_update_index(split_update)]))
print(sum(middle_updates))
[–] [email protected] 1 points 6 days ago

Smalltalk

parsing logic is duplicated between the two, and I probably could use part2's logic for part 1, but yeah

part 1

day5p1: in
	| rules pages i j input |

	input := in lines.
	i := input indexOf: ''.
	rules := ((input copyFrom: 1 to: i-1) collect: [:l | (l splitOn: '|') collect: #asInteger]).
	pages := (input copyFrom: i+1 to: input size) collect: [:l | (l splitOn: ',') collect: #asInteger].
	
	^ pages sum: [ :p |
		(rules allSatisfy: [ :rule |
			i := p indexOf: (rule at: 1).
			j := p indexOf: (rule at: 2).
			(i ~= 0 & (j ~= 0)) ifTrue: [ i < j ] ifFalse: [ true ]
		])
			ifTrue: [p at: ((p size / 2) round: 0) ]
			ifFalse: [0].
	]

part 2

day5p2: in
	| rules pages i pnew input |

	input := in lines.
	i := input indexOf: ''.
	rules := ((input copyFrom: 1 to: i-1) collect: [:l | (l splitOn: '|') collect: #asInteger]).
	pages := (input copyFrom: i+1 to: input size) collect: [:l | (l splitOn: ',') collect: #asInteger].
	
	^ pages sum: [ :p |
		pnew := p sorted: [ :x :y | 
			rules anySatisfy: [ :r | (r at: 1) = x and: [ (r at: 2) = y]]
		].
		pnew ~= p
			ifTrue: [ pnew at: ((pnew size / 2) round: 0) ]
			ifFalse: [0].
	]
[–] [email protected] 6 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

Nim

Solution: sort numbers using custom rules and compare if sorted == original. Part 2 is trivial.
Runtime for both parts: 1.05 ms

proc parseRules(input: string): Table[int, seq[int]] =
  for line in input.splitLines():
    let pair = line.split('|')
    let (a, b) = (pair[0].parseInt, pair[1].parseInt)
    discard result.hasKeyOrPut(a, newSeq[int]())
    result[a].add b

proc solve(input: string): AOCSolution[int, int] =
  let chunks = input.split("\n\n")
  let later = parseRules(chunks[0])
  for line in chunks[1].splitLines():
    let numbers = line.split(',').map(parseInt)
    let sorted = numbers.sorted(cmp =
      proc(a,b: int): int =
        if a in later and b in later[a]: -1
        elif b in later and a in later[b]: 1
        else: 0
    )
    if numbers == sorted:
      result.part1 += numbers[numbers.len div 2]
    else:
      result.part2 += sorted[sorted.len div 2]

Codeberg repo

[–] [email protected] 2 points 2 weeks ago

Nice, compact and easy to follow. The implicit result object reminds me of Visual Basic.

[–] proved_unglue 5 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

Kotlin

Took me a while to figure out how to sort according to the rules. 🀯

fun part1(input: String): Int {
    val (rules, listOfNumbers) = parse(input)
    return listOfNumbers
        .filter { numbers -> numbers == sort(numbers, rules) }
        .sumOf { numbers -> numbers[numbers.size / 2] }
}

fun part2(input: String): Int {
    val (rules, listOfNumbers) = parse(input)
    return listOfNumbers
        .filterNot { numbers -> numbers == sort(numbers, rules) }
        .map { numbers -> sort(numbers, rules) }
        .sumOf { numbers -> numbers[numbers.size / 2] }
}

private fun sort(numbers: List<Int>, rules: List<Pair<Int, Int>>): List<Int> {
    return numbers.sortedWith { a, b -> if (rules.contains(a to b)) -1 else 1 }
}

private fun parse(input: String): Pair<List<Pair<Int, Int>>, List<List<Int>>> {
    val (rulesSection, numbersSection) = input.split("\n\n")
    val rules = rulesSection.lines()
        .mapNotNull { line -> """(\d{2})\|(\d{2})""".toRegex().matchEntire(line) }
        .map { match -> match.groups[1]?.value?.toInt()!! to match.groups[2]?.value?.toInt()!! }
    val numbers = numbersSection.lines().map { line -> line.split(',').map { it.toInt() } }
    return rules to numbers
}
[–] [email protected] 2 points 2 weeks ago (2 children)
load more comments (2 replies)
[–] Andy 5 points 2 weeks ago

Factor

: get-input ( -- rules updates )
  "vocab:aoc-2024/05/input.txt" utf8 file-lines
  { "" } split1
  "|" "," [ '[ [ _ split ] map ] ] bi@ bi* ;

: relevant-rules ( rules update -- rules' )
  '[ [ _ in? ] all? ] filter ;

: compliant? ( rules update -- ? )
  [ relevant-rules ] keep-under
  [ [ index* ] with map first2 < ] with all? ;

: middle-number ( update -- n )
  dup length 2 /i nth-of string>number ;

: part1 ( -- n )
  get-input
  [ compliant? ] with
  [ middle-number ] filter-map sum ;

: compare-pages ( rules page1 page2 -- <=> )
  [ 2array relevant-rules ] keep-under
  [ drop +eq+ ] [ first index zero? +gt+ +lt+ ? ] if-empty ;

: correct-update ( rules update -- update' )
  [ swapd compare-pages ] with sort-with ;

: part2 ( -- n )
  get-input dupd
  [ compliant? ] with reject
  [ correct-update middle-number ] with map-sum ;

on GitHub

[–] [email protected] 5 points 2 weeks ago (1 children)

C#

using QuickGraph;
using QuickGraph.Algorithms.TopologicalSort;
public class Day05 : Solver
{
  private List<int[]> updates;
  private List<int[]> updates_ordered;

  public void Presolve(string input) {
    var blocks = input.Trim().Split("\n\n");
    List<(int, int)> rules = new();
    foreach (var line in blocks[0].Split("\n")) {
      var pair = line.Split('|');
      rules.Add((int.Parse(pair[0]), int.Parse(pair[1])));
    }
    updates = new();
    updates_ordered = new();
    foreach (var line in input.Trim().Split("\n\n")[1].Split("\n")) {
      var update = line.Split(',').Select(int.Parse).ToArray();
      updates.Add(update);

      var graph = new AdjacencyGraph<int, Edge<int>>();
      graph.AddVertexRange(update);
      graph.AddEdgeRange(rules
        .Where(rule => update.Contains(rule.Item1) && update.Contains(rule.Item2))
        .Select(rule => new Edge<int>(rule.Item1, rule.Item2)));
      List<int> ordered_update = [];
      new TopologicalSortAlgorithm<int, Edge<int>>(graph).Compute(ordered_update);
      updates_ordered.Add(ordered_update.ToArray());
    }
  }

  public string SolveFirst() => updates.Zip(updates_ordered)
    .Where(unordered_ordered => unordered_ordered.First.SequenceEqual(unordered_ordered.Second))
    .Select(unordered_ordered => unordered_ordered.First)
    .Select(update => update[update.Length / 2])
    .Sum().ToString();

  public string SolveSecond() => updates.Zip(updates_ordered)
    .Where(unordered_ordered => !unordered_ordered.First.SequenceEqual(unordered_ordered.Second))
    .Select(unordered_ordered => unordered_ordered.Second)
    .Select(update => update[update.Length / 2])
    .Sum().ToString();
}
[–] [email protected] 2 points 2 weeks ago (1 children)

Oh! Sort first and then check for equality. Clever!

[–] [email protected] 2 points 2 weeks ago

You'll need to sort them anyway :)

(my first version of the first part only checked the order, without sorting).

[–] [email protected] 4 points 2 weeks ago* (last edited 2 weeks ago)

Haskell

Part two was actually much easier than I thought it was!

import Control.Arrow
import Data.Bool
import Data.List
import Data.List.Split
import Data.Maybe

readInput :: String -> ([(Int, Int)], [[Int]])
readInput = (readRules *** readUpdates . tail) . break null . lines
  where
    readRules = map $ (read *** read . tail) . break (== '|')
    readUpdates = map $ map read . splitOn ","

mid = (!!) <*> ((`div` 2) . length)

isSortedBy rules = (`all` rules) . match
  where
    match ps (x, y) = fromMaybe True $ (<) <$> elemIndex x ps <*> elemIndex y ps

pageOrder rules = curry $ bool GT LT . (`elem` rules)

main = do
  (rules, updates) <- readInput <$> readFile "input05"
  let (part1, part2) = partition (isSortedBy rules) updates
  mapM_ (print . sum . map mid) [part1, sortBy (pageOrder rules) <$> part2]
[–] [email protected] 4 points 2 weeks ago (2 children)

Uiua

Well it's still today here, and this is how I spent my evening. It's not pretty or maybe even good, but it works on the test data...

spoilerUses Kahn's algorithm with simplifying assumptions based on the helpful nature of the data.

Try it here

Data ← ⊜(β–‘)βŠΈβ‰ @\n "47|53\n97|13\n97|61\n97|47\n75|29\n61|13\n75|53\n29|13\n97|29\n53|29\n61|53\n97|53\n61|29\n47|13\n75|47\n97|75\n47|61\n75|61\n47|29\n75|13\n53|13\n\n75,47,61,53,29\n97,61,53,29,13\n75,29,13\n75,97,47,61,53\n61,13,29\n97,13,75,29,47"
Rs   ← ≑◇(βŠœβ‹•βŠΈβ‰ @|)β–½βŠΈβ‰‘β—‡(β§»βŠšβŒ•@|)Data
Ps   ← β‰‘βš(βŠœβ‹•βŠΈβ‰ @,)β–½βŠΈβ‰‘β—‡(Β¬β§»βŠšβŒ•@|)Data

NoPred  ← βŠ’β–½:⟜(≑(=0/+βŒ•)βŠ™Β€)β—΄β™­βŸœβ‰‘βŠ£                # Find entry without predecessors.
GetLead ← ⊸(β–½:⟜(≑(Β¬/+=))βŠ™Β€)⟜NoPred             # Remove that leading entry.
Rules   ← β‡ŒβŠ‚βŠƒ(β‡ŒβŠ’Β°β–‘βŠ’|β‰‘Β°β–‘β†˜1)[░⍒(GetLead|β‰ 1⧻)] Rs # Repeatedly find rule without predecessors (Kaaaaaahn!).

Sorted   ← βŠββŠ—,Rules
IsSorted ← /Γ—>0≑/-β—«2βŠ—Β°β–‘: Rules
MidVal   ← ⊑:⟜(⌊÷ 2⧻)

β‡ŒβŠ•β–‘βŠΈβ‰‘IsSorted Ps        # Group by whether the pages are in sort order.
≑◇(/+≑◇(MidVal Sorted)) # Find midpoints and sum.

[–] CameronDev 3 points 2 weeks ago (2 children)

Does this language ever look pretty? Great for signaling UFOs though :D

[–] [email protected] 2 points 2 weeks ago

Those unicode code points won't use themselves.

[–] [email protected] 2 points 2 weeks ago

Ah, but the terseness of the code allows the beauty of the underlying algorithm to shine through :-)

[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago)

Oh my. I just watched yernab's video, and this becomes so much easier:

# Order is totally specified, so sort by number of predecessors,
# check to see which were already sorted, then group and sum each group.
Data ← ⊜(β–‘βŠœβ–‘βŠΈβ‰ @\n)⊸(Β¬β¦·"\n\n")"47|53\n97|13\n97|61\n97|47\n75|29\n61|13\n75|53\n29|13\n97|29\n53|29\n61|53\n97|53\n61|29\n47|13\n75|47\n97|75\n47|61\n75|61\n47|29\n75|13\n53|13\n\n75,47,61,53,29\n97,61,53,29,13\n75,29,13\n75,97,47,61,53\n61,13,29\n97,13,75,29,47"
Rs   ← ≑◇(βŠœβ‹•βŠΈβ‰ @|)Β°β–‘βŠ’Data
Ps   ← β‰‘βš(βŠœβ‹•βŠΈβ‰ @,)Β°β–‘βŠ£Data
βŠ•(/+≑◇(⊑⌊÷2⧻.))Β¬β‰‘β‰βŸœ:β‰‘βš(⊏⍏/+⊞(∈Rs⊟)..).Ps
[–] [email protected] 4 points 2 weeks ago* (last edited 2 weeks ago)

Dart

A bit easier than I first thought it was going to be.

I had a look at the Uiua discussion, and this one looks to be beyond my pay grade, so this will be it for today.

import 'package:collection/collection.dart';
import 'package:more/more.dart';

(int, int) solve(List<String> lines) {
  var parts = lines.splitAfter((e) => e == '');
  var pred = SetMultimap.fromEntries(parts.first.skipLast(1).map((e) {
    var ps = e.split('|').map(int.parse);
    return MapEntry(ps.last, ps.first);
  }));
  ordering(a, b) => pred[a].contains(b) ? 1 : 0;

  var pageSets = parts.last.map((e) => e.split(',').map(int.parse).toList());
  var partn = pageSets.partition((ps) => ps.isSorted(ordering));
  return (
    partn.truthy.map((e) => e[e.length ~/ 2]).sum,
    partn.falsey.map((e) => (e..sort(ordering))[e.length ~/ 2]).sum
  );
}

part1(List<String> lines) => solve(lines).$1;
part2(List<String> lines) => solve(lines).$2;
[–] Gobbel2000 3 points 2 weeks ago

Rust

While part 1 was pretty quick, part 2 took me a while to figure something out. I figured that the relation would probably be a total ordering, and obtained the actual order using topological sorting. But it turns out the relation has cycles, so the topological sort must be limited to the elements that actually occur in the lists.

Solution

use std::collections::{HashSet, HashMap, VecDeque};

fn parse_lists(input: &str) -> Vec<Vec<u32>> {
    input.lines()
        .map(|l| l.split(',').map(|e| e.parse().unwrap()).collect())
        .collect()
}

fn parse_relation(input: String) -> (HashSet<(u32, u32)>, Vec<Vec<u32>>) {
    let (ordering, lists) = input.split_once("\n\n").unwrap();
    let relation = ordering.lines()
        .map(|l| {
            let (a, b) = l.split_once('|').unwrap();
            (a.parse().unwrap(), b.parse().unwrap())
        })
        .collect();
    (relation, parse_lists(lists))
}

fn parse_graph(input: String) -> (Vec<Vec<u32>>, Vec<Vec<u32>>) {
    let (ordering, lists) = input.split_once("\n\n").unwrap();
    let mut graph = Vec::new();
    for l in ordering.lines() {
        let (a, b) = l.split_once('|').unwrap();
        let v: u32 = a.parse().unwrap();
        let w: u32 = b.parse().unwrap();
        let new_len = v.max(w) as usize + 1;
        if new_len > graph.len() {
            graph.resize(new_len, Vec::new())
        }
        graph[v as usize].push(w);
    }
    (graph, parse_lists(lists))
}


fn part1(input: String) {
    let (relation, lists) = parse_relation(input); 
    let mut sum = 0;
    for l in lists {
        let mut valid = true;
        for i in 0..l.len() {
            for j in 0..i {
                if relation.contains(&(l[i], l[j])) {
                    valid = false;
                    break
                }
            }
            if !valid { break }
        }
        if valid {
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}


// Topological order of graph, but limited to nodes in the set `subgraph`.
// Otherwise the graph is not acyclic.
fn topological_sort(graph: &[Vec<u32>], subgraph: &HashSet<u32>) -> Vec<u32> {
    let mut order = VecDeque::with_capacity(subgraph.len());
    let mut marked = vec![false; graph.len()];
    for &v in subgraph {
        if !marked[v as usize] {
            dfs(graph, subgraph, v as usize, &mut marked, &mut order)
        }
    }
    order.into()
}

fn dfs(graph: &[Vec<u32>], subgraph: &HashSet<u32>, v: usize, marked: &mut [bool], order: &mut VecDeque<u32>) {
    marked[v] = true;
    for &w in graph[v].iter().filter(|v| subgraph.contains(v)) {
        if !marked[w as usize] {
            dfs(graph, subgraph, w as usize, marked, order);
        }
    }
    order.push_front(v as u32);
}

fn rank(order: &[u32]) -> HashMap<u32, u32> {
    order.iter().enumerate().map(|(i, x)| (*x, i as u32)).collect()
}

// Part 1 with topological sorting, which is slower
fn _part1(input: String) {
    let (graph, lists) = parse_graph(input);
    let mut sum = 0;
    for l in lists {
        let subgraph = HashSet::from_iter(l.iter().copied());
        let rank = rank(&topological_sort(&graph, &subgraph));
        if l.is_sorted_by_key(|x| rank[x]) {
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}

fn part2(input: String) {
    let (graph, lists) = parse_graph(input);
    let mut sum = 0;
    for mut l in lists {
        let subgraph = HashSet::from_iter(l.iter().copied());
        let rank = rank(&topological_sort(&graph, &subgraph));
        if !l.is_sorted_by_key(|x| rank[x]) {
            l.sort_unstable_by_key(|x| rank[x]);            
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}

util::aoc_main!();

also on github

[–] Sparrow_1029 3 points 2 weeks ago* (last edited 2 weeks ago) (2 children)

Rust

Real thinker. Messed around with a couple solutions before this one. The gist is to take all the pairwise comparisons given and record them for easy access in a ranking matrix.

For the sample input, this grid would look like this (I left out all the non-present integers, but it would be a 98 x 98 grid where all the empty spaces are filled with Ordering::Equal):

   13 29 47 53 61 75 97
13  =  >  >  >  >  >  >
29  <  =  >  >  >  >  >
47  <  <  =  <  <  >  >
53  <  <  >  =  >  >  >
61  <  <  >  <  =  >  >
75  <  <  <  <  <  =  >
97  <  <  <  <  <  <  =

I discovered this can't be used for a total order on the actual puzzle input because there were cycles in the pairs given (see how rust changed sort implementations as of 1.81). I used usize for convenience (I did it with u8 for all the pair values originally, but kept having to cast over and over as usize). Didn't notice a performance difference, but I'm sure uses a bit more memory.

Also I Liked the simple_grid crate a little better than the grid one. Will have to refactor that out at some point.

solution

use std::{cmp::Ordering, fs::read_to_string};

use simple_grid::Grid;

type Idx = (usize, usize);
type Matrix = Grid<Ordering>;
type Page = Vec<usize>;

fn parse_input(input: &str) -> (Vec<Idx>, Vec<Page>) {
    let split: Vec<&str> = input.split("\n\n").collect();
    let (pair_str, page_str) = (split[0], split[1]);
    let pairs = parse_pairs(pair_str);
    let pages = parse_pages(page_str);
    (pairs, pages)
}

fn parse_pairs(input: &str) -> Vec<Idx> {
    input
        .lines()
        .map(|l| {
            let (a, b) = l.split_once('|').unwrap();
            (a.parse().unwrap(), b.parse().unwrap())
        })
        .collect()
}

fn parse_pages(input: &str) -> Vec<Page> {
    input
        .lines()
        .map(|l| -> Page {
            l.split(",")
                .map(|d| d.parse::<usize>().expect("invalid digit"))
                .collect()
        })
        .collect()
}

fn create_matrix(pairs: &[Idx]) -> Matrix {
    let max = *pairs
        .iter()
        .flat_map(|(a, b)| [a, b])
        .max()
        .expect("iterator is non-empty")
        + 1;
    let mut matrix = Grid::new(max, max, vec![Ordering::Equal; max * max]);
    for (a, b) in pairs {
        matrix.replace_cell((*a, *b), Ordering::Less);
        matrix.replace_cell((*b, *a), Ordering::Greater);
    }
    matrix
}

fn valid_pages(pages: &[Page], matrix: &Matrix) -> usize {
    pages
        .iter()
        .filter_map(|p| {
            if check_order(p, matrix) {
                Some(p[p.len() / 2])
            } else {
                None
            }
        })
        .sum()
}

fn fix_invalid_pages(pages: &mut [Page], matrix: &Matrix) -> usize {
    pages
        .iter_mut()
        .filter(|p| !check_order(p, matrix))
        .map(|v| {
            v.sort_by(|a, b| *matrix.get((*a, *b)).unwrap());
            v[v.len() / 2]
        })
        .sum()
}

fn check_order(page: &[usize], matrix: &Matrix) -> bool {
    page.is_sorted_by(|a, b| *matrix.get((*a, *b)).unwrap() == Ordering::Less)
}

pub fn solve() {
    let input = read_to_string("inputs/day05.txt").expect("read file");
    let (pairs, mut pages) = parse_input(&input);
    let matrix = create_matrix(&pairs);
    println!("Part 1: {}", valid_pages(&pages, &matrix));
    println!("Part 2: {}", fix_invalid_pages(&mut pages, &matrix));
}

On github

*Edit: I did try switching to just using std::collections::HashMap, but it was 0.1 ms slower on average than using the simple_grid::Grid... Vec[idx] access is faster maybe?

[–] CameronDev 4 points 2 weeks ago (1 children)

I think you may have over thought it, I just applied the rules by swapping unordered pairs until it was ordered :D cool solution though

[–] [email protected] 2 points 2 weeks ago (1 children)
[–] CameronDev 2 points 2 weeks ago

Its called AdventOfCode, not AdventOfEfficientCode :D

[–] [email protected] 2 points 2 weeks ago

Very cool approach. I didn't think that far. I just wrote a compare function and hoped for the best.

[–] [email protected] 3 points 2 weeks ago

J

This is a problem where J's biases lead one to a very different solution from most of the others. The natural representation of a directed graph in J is an adjacency matrix, and sorting is specified in terms of a permutation to apply rather than in terms of a comparator: x /: y (respectively x \: y) determines the permutation that would put y in ascending (descending) order, then applies that permutation to x.

data_file_name =: '5.data'
lines =: cutopen fread data_file_name
NB. manuals start with the first line where the index of a comma is &lt; 5
start_of_manuals =: 1 i.~ 5 > ',' i.~"1 > lines
NB. ". can't parse the | so replace it with a space
edges =: ". (' ' &amp; (2}))"1 > start_of_manuals {. lines
NB. don't unbox and parse yet because they aren't all the same length
manuals =: start_of_manuals }. lines
max_page =: >./ , edges
NB. adjacency matrix of the page partial ordering; e.i. makes identity matrix
adjacency =: 1 (&lt; edges)} e. i. >: max_page
NB. ordered line is true if line is ordered according to the adjacency matrix
ordered =: monad define
   pages =. ". > y
   NB. index pairs 0 &lt;: i &lt; j &lt; n; box and raze to avoid array fill
   page_pairs =. ; (&lt; @: (,~"0 i.)"0) i. # pages
   */ adjacency {~ &lt;"1 pages {~ page_pairs
)
midpoint =: ({~ (&lt;. @: -: @: #)) @: ". @: >
result1 =: +/ (ordered"0 * midpoint"0) manuals

NB. toposort line yields the pages of line topologically sorted by adjacency
NB. this is *not* a general topological sort but works for our restricted case:
NB. we know that each individual manual will be totally ordered
toposort =: monad define
   pages =. ". > y
   NB. for each page, count the pages which come after it, then sort descending
   pages \: +/"1 adjacency {~ &lt;"1 pages ,"0/ pages
)
NB. midpoint2 doesn't parse, but does remove trailing zeroes
midpoint2 =: ({~ (&lt;. @: -: @: #)) @: ({.~ (i. &amp; 0))
result2 =: +/ (1 - ordered"0 manuals) * midpoint2"1 toposort"0 manuals
[–] [email protected] 2 points 2 weeks ago
[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago)

Haskell

It's more complicated than it needs to be, could've done the first part just like the second.
Also it takes one second (!) to run it .-.

import Data.Maybe as Maybe
import Data.List as List
import Control.Arrow hiding (first, second)

parseRule :: String -> (Int, Int)
parseRule s = (read . take 2 &&& read . drop 3) s

replace t r c = if t == c then r else c

parse :: String -> ([(Int, Int)], [[Int]])
parse s = (map parseRule rules, map (map read . words) updates)
        where
                rules = takeWhile (/= "") . lines $ s
                updates = init . map (map (replace ',' ' ')) . drop 1 . dropWhile (/= "") . lines $ s

validRule (pairLeft, pairRight) (ruleLeft, ruleRight)
        | pairLeft == ruleRight && pairRight == ruleLeft = False
        | otherwise = True

validatePair rs p = all (validRule p) rs

validateUpdate rs u = all (validatePair rs) pairs
        where 
                pairs = List.concatMap (\ t -> map (head t, ) (tail t)) . filter (length >>> (> 1)) . tails $ u

middleElement :: [a] -> a
middleElement us = (us !!) $ (length us `div` 2)

part1 (rs, us) = sum . map (middleElement) . filter (validateUpdate rs) $ us

insertOrderly rs i is = insertOrderly' frontRules i is
        where
                frontRules = filter (((== i) . fst)) rs

insertOrderly' _  i [] = [i]
insertOrderly' rs i (i':is)
        | any (snd >>> (== i')) rs = i : i' : is
        | otherwise = i' : insertOrderly' rs i is

part2 (rs, us) = sum . map middleElement . Maybe.mapMaybe ((orderUpdate &&& id) >>> \ p -> if (fst p /= snd p) then Just $ fst p else Nothing) $ us
        where
                orderUpdate = foldr (insertOrderly rs) []

main = getContents >>= print . (part1 &&& part2) . parse
[–] [email protected] 2 points 2 weeks ago

Well, this one ended up with a surprisingly easy part 2 with how I wrote it.
Not the most computationally optimal code, but since they're still cheap enough to run in milliseconds I'm not overly bothered.

C#

class OrderComparer : IComparer<int>
{
  Dictionary<int, List<int>> ordering;
  public OrderComparer(Dictionary<int, List<int>> ordering) {
    this.ordering = ordering;
  }

  public int Compare(int x, int y)
  {
    if (ordering.ContainsKey(x) && ordering[x].Contains(y))
      return -1;
    return 1;
  }
}

Dictionary<int, List<int>> ordering = new Dictionary<int, List<int>>();
int[][] updates = new int[0][];

public void Input(IEnumerable<string> lines)
{
  foreach (var pair in lines.TakeWhile(l => l.Contains('|')).Select(l => l.Split('|').Select(w => int.Parse(w))))
  {
    if (!ordering.ContainsKey(pair.First()))
      ordering[pair.First()] = new List<int>();
    ordering[pair.First()].Add(pair.Last());
  }
  updates = lines.SkipWhile(s => s.Contains('|') || string.IsNullOrWhiteSpace(s)).Select(l => l.Split(',').Select(w => int.Parse(w)).ToArray()).ToArray();
}

public void Part1()
{
  int correct = 0;
  var comparer = new OrderComparer(ordering);
  foreach (var update in updates)
  {
    var ordered = update.Order(comparer);
    if (update.SequenceEqual(ordered))
      correct += ordered.Skip(ordered.Count() / 2).First();
  }

  Console.WriteLine($"Sum: {correct}");
}
public void Part2()
{
  int incorrect = 0;
  var comparer = new OrderComparer(ordering);
  foreach (var update in updates)
  {
    var ordered = update.Order(comparer);
    if (!update.SequenceEqual(ordered))
      incorrect += ordered.Skip(ordered.Count() / 2).First();
  }

  Console.WriteLine($"Sum: {incorrect}");
}

[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

Python

sort using a compare function

from math import floor
from pathlib import Path
from functools import cmp_to_key
cwd = Path(__file__).parent

def parse_protocol(path):

  with path.open("r") as fp:
    data = fp.read().splitlines()

  rules = data[:data.index('')]
  page_to_rule = {r.split('|')[0]:[] for r in rules}
  [page_to_rule[r.split('|')[0]].append(r.split('|')[1]) for r in rules]

  updates = list(map(lambda x: x.split(','), data[data.index('')+1:]))

  return page_to_rule, updates

def sort_pages(pages, page_to_rule):

  compare_pages = lambda page1, page2:\
    0 if page1 not in page_to_rule or page2 not in page_to_rule[page1] else -1

  return sorted(pages, key = cmp_to_key(compare_pages))

def solve_problem(file_name, fix):

  page_to_rule, updates = parse_protocol(Path(cwd, file_name))

  to_print = [temp_p[int(floor(len(pages)/2))] for pages in updates
              if (not fix and (temp_p:=pages) == sort_pages(pages, page_to_rule))
              or (fix and (temp_p:=sort_pages(pages, page_to_rule)) != pages)]

  return sum(map(int,to_print))
[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

No need for floor, you can just use len(pages) // 2.

load more comments (1 replies)
[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

C

I got the question so wrong - I thought a|b and b|c would imply a|c so I went and used dynamic programming to propagate indirect relations through a table.

It worked beautifully but not for the input, which doesn't describe an absolute global ordering at all. It may well give a|c and b|c AND c|a. Nothing can be deduced then, and nothing needs to, because all required relations are directly specified.

The table works great though, the sort comparator is a simple 2D array index, so O(1).

Code

#include "common.h"

#define TSZ 100
#define ASZ 32

/* tab[a][b] is -1 if a<b and 1 if a>b */
static int8_t tab[TSZ][TSZ];

static int
cmp(const void *a, const void *b)
{
	return tab[*(const int *)a][*(const int *)b];
}

int
main(int argc, char **argv)
{
	char buf[128], *rest, *tok;
	int p1=0,p2=0, arr[ASZ],srt[ASZ], n,i, a,b;

	if (argc > 1)
		DISCARD(freopen(argv[1], "r", stdin));
	
	while (fgets(buf, sizeof(buf), stdin)) {
		if (sscanf(buf, "%d|%d", &a, &b) != 2)
			break;
		assert(a>=0); assert(a<TSZ);
		assert(b>=0); assert(b<TSZ);
		tab[a][b] = -(tab[b][a] = 1);
	}

	while ((rest = fgets(buf, sizeof(buf), stdin))) {
		for (n=0; (tok = strsep(&rest, ",")); n++) {
			assert(n < (int)LEN(arr));
			sscanf(tok, "%d", &arr[n]);
		}

		memcpy(srt, arr, n*sizeof(*srt));
		qsort(srt, n, sizeof(*srt), cmp);
		*(memcmp(srt, arr, n*sizeof(*srt)) ? &p1 : &p2) += srt[n/2];
	}

	printf("05: %d %d\n", p1, p2);
	return 0;
}

https://github.com/sjmulder/aoc/blob/master/2024/c/day05.c

[–] [email protected] 1 points 2 weeks ago

Same, I initially also thought a|b and a|c implies a|c. However when I drew the graph of the example on paper, I suspected that all relations will be given, and coded it with that assumption, that turned out to be correct

[–] [email protected] 2 points 2 weeks ago* (last edited 2 weeks ago)

Python

Also took advantage of cmp_to_key.

from functools import cmp_to_key
from pathlib import Path


def parse_input(input: str) -> tuple[dict[int, list[int]], list[list[int]]]:
    rules, updates = tuple(input.strip().split("\n\n")[:2])
    order = {}
    for entry in rules.splitlines():
        values = entry.split("|")
        order.setdefault(int(values[0]), []).append(int(values[1]))
    updates = [[int(v) for v in u.split(",")] for u in updates.splitlines()]
    return (order, updates)


def is_ordered(update: list[int], order: dict[int, list[int]]) -> bool:
    return update == sorted(
        update, key=cmp_to_key(lambda a, b: 1 if a in order.setdefault(b, []) else -1)
    )


def part_one(input: str) -> int:
    order, updates = parse_input(input)
    return sum([u[len(u) // 2] for u in (u for u in updates if is_ordered(u, order))])


def part_two(input: str) -> int:
    order, updates = parse_input(input)
    return sum(
        [
            sorted(u, key=cmp_to_key(lambda a, b: 1 if a in order[b] else -1))[
                len(u) // 2
            ]
            for u in (u for u in updates if not is_ordered(u, order))
        ]
    )


if __name__ == "__main__":
    input = Path("input").read_text("utf-8")
    print(part_one(input))
    print(part_two(input))
[–] [email protected] 2 points 2 weeks ago

I was very much unhappy because my previous implementation took 1 second to execute and trashed through 2GB RAM in the process of doing so, I sat down again with some inspiration about the sorting approach.
I am very much happy now, the profiler tells me that most of time is spend in the parsing functions now.

I am also grateful for everyone else doing haskell, this way I learned about Arrays, Bifunctors and Arrows which (I think) improved my code a lot.

Haskell

import Control.Arrow hiding (first, second)

import Data.Map (Map)
import Data.Set (Set)
import Data.Bifunctor

import qualified Data.Maybe as Maybe
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Ord as Ord


parseRule :: String -> (Int, Int)
parseRule s = (read . take 2 &&& read . drop 3) s

replace t r c = if t == c then r else c

parse :: String -> (Map Int (Set Int), [[Int]])
parse s = (map parseRule >>> buildRuleMap $ rules, map (map read . words) updates)
        where
                rules = takeWhile (/= "") . lines $ s
                updates = init . map (map (replace ',' ' ')) . drop 1 . dropWhile (/= "") . lines $ s

middleElement :: [a] -> a
middleElement us = (us !!) $ (length us `div` 2)

ruleGroup :: Eq a => (a, b) -> (a, b') -> Bool
ruleGroup = curry (uncurry (==) <<< fst *** fst)

buildRuleMap :: [(Int, Int)] -> Map Int (Set Int)
buildRuleMap rs = List.sortOn fst
        >>> List.groupBy ruleGroup 
        >>> map ((fst . head) &&& map snd) 
        >>> map (second Set.fromList) 
        >>> Map.fromList 
        $ rs

elementSort :: Map Int (Set Int) -> Int -> Int -> Ordering 
elementSort rs a b
        | Maybe.maybe False (Set.member b) (rs Map.!? a) = LT
        | Maybe.maybe False (Set.member a) (rs Map.!? b) = GT
        | otherwise = EQ

isOrdered rs u = (List.sortBy (elementSort rs) u) == u

part1 (rs, us) = filter (isOrdered rs)
        >>> map middleElement
        >>> sum
        $ us
part2 (rs, us) = filter (isOrdered rs >>> not)
        >>> map (List.sortBy (elementSort rs))
        >>> map middleElement
        >>> sum
        $ us

main = getContents >>= print . (part1 &&& part2) . parse
[–] [email protected] 2 points 2 weeks ago

Haskell

I should probably have used sortBy instead of this ad-hoc selection sort.

import Control.Arrow
import Control.Monad
import Data.Char
import Data.List qualified as L
import Data.Map
import Data.Set
import Data.Set qualified as S
import Text.ParserCombinators.ReadP

parse = (,) <$> (fromListWith S.union <$> parseOrder) <*> (eol *> parseUpdate)
parseOrder = endBy (flip (,) <$> (S.singleton <$> parseInt <* char '|') <*> parseInt) eol
parseUpdate = endBy (sepBy parseInt (char ',')) eol
parseInt = read <$> munch1 isDigit
eol = char '\n'

verify :: Map Int (Set Int) -> [Int] -> Bool
verify m = and . (zipWith fn <*> scanl (flip S.insert) S.empty)
  where
    fn a = flip S.isSubsetOf (findWithDefault S.empty a m)

getMiddle = ap (!!) ((`div` 2) . length)

part1 m = sum . fmap getMiddle

getOrigin :: Map Int (Set Int) -> Set Int -> Int
getOrigin m l = head $ L.filter (S.disjoint l . preds) (S.toList l)
  where
    preds = flip (findWithDefault S.empty) m

order :: Map Int (Set Int) -> Set Int -> [Int]
order m s
  | S.null s = []
  | otherwise = h : order m (S.delete h s)
    where
      h = getOrigin m s

part2 m = sum . fmap (getMiddle . order m . S.fromList)

main = getContents >>= print . uncurry runParts . fst . last . readP_to_S parse
runParts m = L.partition (verify m) >>> (part1 m *** part2 m)
[–] [email protected] 2 points 2 weeks ago

Nim

import ../aoc, strutils, sequtils, tables

type
  Rules = ref Table[int, seq[int]]

#check if an update sequence is valid
proc valid(update:seq[int], rules:Rules):bool =
  for pi, p in update:
    for r in rules.getOrDefault(p):
      let ri = update.find(r)
      if ri != -1 and ri < pi:
        return false
  return true

proc backtrack(p:int, index:int, update:seq[int], rules: Rules, sorted: var seq[int]):bool =
  if index == 0:
    sorted[index] = p
    return true
  
  for r in rules.getOrDefault(p):
    if r in update and r.backtrack(index-1, update, rules, sorted):
      sorted[index] = p
      return true
  
  return false

#fix an invalid sequence
proc fix(update:seq[int], rules: Rules):seq[int] =
  echo "fixing", update
  var sorted = newSeqWith(update.len, 0);
  for p in update:
    if p.backtrack(update.len-1, update, rules, sorted):
      return sorted
  return @[]

proc solve*(input:string): array[2,int] =
  let parts = input.split("\r\n\r\n");
  
  let rulePairs = parts[0].splitLines.mapIt(it.strip.split('|').map(parseInt))
  let updates = parts[1].splitLines.mapIt(it.split(',').map(parseInt))
  
  # fill rules table
  var rules = new Rules
  for rp in rulePairs:
    if rules.hasKey(rp[0]):
      rules[rp[0]].add rp[1];
    else:
      rules[rp[0]] = @[rp[1]]
      
  # fill reverse rules table
  var backRules = new Rules
  for rp in rulePairs:
    if backRules.hasKey(rp[1]):
      backRules[rp[1]].add rp[0];
    else:
      backRules[rp[1]] = @[rp[0]]
  
  for u in updates:
    if u.valid(rules):
      result[0] += u[u.len div 2]
    else:
      let uf = u.fix(backRules)
      result[1] += uf[uf.len div 2]

I thought of doing a sort at first, but dismissed it for some reason, so I came up with this slow and bulky recursive backtracking thing which traverses the rules as a graph until it reaches a depth equal to the given sequence. Not my finest work, but it does solve the puzzle :)

[–] [email protected] 1 points 2 weeks ago* (last edited 2 weeks ago)

python

solution

import re
import aoc

def setup():
    lines = aoc.get_lines(5)
    return ([list(map(int, re.findall(r'\d+', x)))
             for x in lines if re.search(r'\|', x)],
            [list(map(int, re.findall(r'\d+', x)))
             for x in lines if re.search(r',', x)], 0)

def one():
    rules, updates, acc = setup()
    for update in updates:
        v = 1
        for i, u in enumerate(update):
            r = [x[0] for x in rules if x[1] == u and x[0] in update]
            if not all(n in update[:i] for n in r):
                v = 0
                break
        if v:
            acc += update[len(update) // 2]
    print(acc)

def fix(update, rules):
    c = 1
    while c:
        c = 0
        for i, u in enumerate(update):
            r = [x[0] for x in rules if x[1] == u and x[0] in update]
            for p in r:
                pi = update.index(p)
                if pi > i:
                    update[i], update[pi] = update[pi], update[i]
                    c = 1
    return update[len(update) // 2]

def two():
    rules, updates, acc = setup()
    for update in updates:
        v = 1
        for i, u in enumerate(update):
            r = [x[0] for x in rules if x[1] == u and x[0] in update]
            if not all(n in update[:i] for n in r):
                v = 0
                break
        if not v:
            acc += fix(update, rules)
    print(acc)

one()
two()

[–] [email protected] 1 points 2 weeks ago

Lisp

Part 1 and 2


(defun p1-process-rules (line)
  (mapcar #'parse-integer (uiop:split-string line :separator "|")))

(defun p1-process-pages (line)
  (mapcar #'parse-integer (uiop:split-string line :separator ",")))

(defun middle (pages)
  (nth (floor (length pages) 2) pages))

(defun check-rule-p (rule pages)
  (let ((p1 (position (car rule) pages))
        (p2 (position (cadr rule) pages)))
    (or (not p1) (not p2) (< p1 p2))))

(defun ordered-p (pages rules)
  (loop for r in rules
        unless (check-rule-p r pages)
          return nil
        finally
           (return t)))

(defun run-p1 (rules-file pages-file) 
  (let ((rules (read-file rules-file #'p1-process-rules))
        (pages (read-file pages-file #'p1-process-pages)))
    (loop for p in pages
          when (ordered-p p rules)
            sum (middle p)
          )))

(defun fix-pages (rules pages)
  (sort pages (lambda (p1 p2) (ordered-p (list p1 p2) rules)) ))

(defun run-p2 (rules-file pages-file) 
  (let ((rules (read-file rules-file #'p1-process-rules))
        (pages (read-file pages-file #'p1-process-pages)))
    (loop for p in pages
          unless (ordered-p p rules)
            sum (middle (fix-pages rules p))
          )))

[–] madmo 1 points 2 weeks ago

Rust

Used a sorted/unsorted comparison to solve the first part, the second part was just filling out the else branch.

use std::{
    cmp::Ordering,
    collections::HashMap,
    io::{BufRead, BufReader},
};

fn main() {
    let mut lines = BufReader::new(std::fs::File::open("input.txt").unwrap()).lines();

    let mut rules: HashMap<u64, Vec<u64>> = HashMap::default();

    for line in lines.by_ref() {
        let line = line.unwrap();

        if line.is_empty() {
            break;
        }

        let lr = line
            .split('|')
            .map(|el| el.parse::<u64>())
            .collect::<Result<Vec<u64>, _>>()
            .unwrap();

        let left = lr[0];
        let right = lr[1];

        if let Some(values) = rules.get_mut(&left) {
            values.push(right);
            values.sort();
        } else {
            rules.insert(left, vec![right]);
        }
    }

    let mut updates: Vec<Vec<u64>> = Vec::default();

    for line in lines {
        let line = line.unwrap();

        let update = line
            .split(',')
            .map(|el| el.parse::<u64>())
            .collect::<Result<Vec<u64>, _>>()
            .unwrap();

        updates.push(update);
    }

    let mut middle_sum = 0;
    let mut fixed_middle_sum = 0;

    for update in updates {
        let mut update_sorted = update.clone();
        update_sorted.sort_by(|a, b| {
            if let Some(rules) = rules.get(a) {
                if rules.contains(b) {
                    Ordering::Less
                } else {
                    Ordering::Equal
                }
            } else {
                Ordering::Equal
            }
        });

        if update.eq(&update_sorted) {
            let middle = update[(update.len() - 1) / 2];
            middle_sum += middle;
        } else {
            let middle = update_sorted[(update_sorted.len() - 1) / 2];
            fixed_middle_sum += middle;
        }
    }

    println!("part1: {} part2: {}", middle_sum, fixed_middle_sum);
}
[–] Quant 1 points 2 weeks ago

Uiua

This is the first one that caused me some headache because I didn't read the instructions carefully enough.
I kept trying to create a sorted list for when all available pages were used, which got me stuck in an endless loop.

Another fun part was figuring out to use memberof (∈) instead of find (βŒ•) in the last line of FindNext. So much time spent on debugging other areas of the code

Run with example input here

FindNext ← βŠ™(
  ⊑1⍉,
  βŠƒβ–½(β–½Β¬)⊸∈
  βŠ™βŠ™(⊑0⍉.)
  :βŠ™(⟜(β–½Β¬βˆˆ))
)

# find the order of pages for a given set of rules
FindOrder ← (
  β—΄β™­.
  []
  ⍒(βŠ‚FindNext|β‹…(>1⧻))
  βŠ™β—ŒβŠ‚
)

PartOne ← (
  &rs ∞ &fo "input-5.txt"
  βˆ©Β°β–‘Β°βŠŸβŠœβ–‘Β¬βŒ•"\n\n".
  βŠ™(⊜(β–‘βŠœβ‹•β‰ @,.)β‰ @\n.β†˜1)
  ⊜(βŠœβ‹•β‰ @|.)β‰ @\n.

  βŠ™.
  Β€
  ⊞(β—‘(Β°β–‘:)
    ⟜:βŠ™(Β°βŠŸβ‰)
    =2+∩∈
    β–½
    FindOrder
    βŠΈβ‰Β°β–‘:
    βŠ™β—Œ
  )
  ≑◇(⊑⌊÷2⧻.)β–½β™­
  /+
)

PartTwo ← (
  &rs ∞ &fo "input-5.txt"
  βˆ©Β°β–‘Β°βŠŸβŠœβ–‘Β¬βŒ•"\n\n".
  βŠ™(⊜(β–‘βŠœβ‹•β‰ @,.)β‰ @\n.β†˜1)
  ⊜(βŠœβ‹•β‰ @|.)β‰ @\n.
  βŠ™.
  ⍜€⊞(
    β—‘(Β°β–‘:)
    ⟜:βŠ™(Β°βŠŸβ‰)
    =2+∩∈
    β–½
    FindOrder
    βŠΈβ‰Β°β–‘:
    βŠŸβˆ©β–‘
  )
  βŠ™β—Œ
  βŠƒ(⊑0)(⊑1)⍉
  ≑◇(⊑⌊÷2⧻.)▽¬≑°░
  /+
)

&p "Day 5:"
&pf "Part 1: "
&p PartOne
&pf "Part 2: "
&p PartTwo
[–] [email protected] 1 points 2 weeks ago

Kotlin

That was an easy one, once you define a comparator function. (At least when you have a sorting function in your standard-library.) The biggest part was the parsing. lol

import kotlin.text.Regex

fun main() {
    fun part1(input: List<String>): Int = parseInput(input).sumOf { if (it.isCorrectlyOrdered()) it[it.size / 2].pageNumber else 0 }

    fun part2(input: List<String>): Int = parseInput(input).sumOf { if (!it.isCorrectlyOrdered()) it.sorted()[it.size / 2].pageNumber else 0 }

    val testInput = readInput("Day05_test")
    check(part1(testInput) == 143)
    check(part2(testInput) == 123)

    val input = readInput("Day05")
    part1(input).println()
    part2(input).println()
}

fun parseInput(input: List<String>): List<List<Page>> {
    val (orderRulesStrings, pageSequencesStrings) = input.filter { it.isNotEmpty() }.partition { Regex("""\d+\|\d+""").matches(it) }

    val orderRules = orderRulesStrings.map { with(it.split('|')) { this[0].toInt() to this[1].toInt() } }
    val orderRulesX = orderRules.map { it.first }.toSet()
    val pages = orderRulesX.map { pageNumber ->
        val orderClasses = orderRules.filter { it.first == pageNumber }.map { it.second }
        Page(pageNumber, orderClasses)
    }.associateBy { it.pageNumber }

    val pageSequences = pageSequencesStrings.map { sequenceString ->
        sequenceString.split(',').map { pages[it.toInt()] ?: Page(it.toInt(), emptyList()) }
    }

    return pageSequences
}

/*
 * An order class is an equivalence class for every page with the same page to be printed before.
 */
data class Page(val pageNumber: Int, val orderClasses: List<Int>): Comparable<Page> {
    override fun compareTo(other: Page): Int =
        if (other.pageNumber in orderClasses) -1
        else if (pageNumber in other.orderClasses) 1
        else 0
}

fun List<Page>.isCorrectlyOrdered(): Boolean = this == this.sorted()

[–] [email protected] 1 points 2 weeks ago

Julia

No really proud of todays solution. Probably because I started too late today.

I used a dictionary with the numbers that should be in front of any given number. Then I checked if they appear after that number. Part1 check. For part 2 I just hoped for the best that ordering it would work by switching each two problematic entries and it worked.

::: spoiler

function readInput(inputFile::String)
	f = open(inputFile,"r"); lines::Vector{String} = readlines(f); close(f)
	updates::Vector{Vector{Int}} = []
	pageOrderingRules = Dict{Int,Vector{Int}}()
	readRules::Bool = true #switch off after rules are read, then read updates
	for (i,line) in enumerate(lines)
		line=="" ? (readRules=false;continue) : nothing
		if readRules
			values::Vector{Int} = map(x->parse(Int,x),split(line,"|"))
			!haskey(pageOrderingRules,values[2]) ? pageOrderingRules[values[2]]=Vector{Int}() : nothing
			push!(pageOrderingRules[values[2]],values[1])
		else #read updates
			push!(updates,map(x->parse(Int,x),split(line,",")))
		end
	end
	return updates, pageOrderingRules
end

function checkUpdateInOrder(update::Vector{Int},pageOrderingRules::Dict{Int,Vector{Int}})::Bool
	inCorrectOrder::Bool = true
	for i=1 : length(update)-1
		for j=i+1 : length(update)
			!haskey(pageOrderingRules,update[i]) ? continue : nothing
			update[j] in pageOrderingRules[update[i]] ? inCorrectOrder=false : nothing
		end
		!inCorrectOrder ? break : nothing
	end
	return inCorrectOrder
end

function calcMidNumSum(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int
	midNumSum::Int = 0
	for update in updates
		checkUpdateInOrder(update,pageOrderingRules) ? midNumSum+=update[Int(ceil(length(update)/2))] : nothing
	end
	return midNumSum
end

function calcMidNumSumForCorrected(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int
	midNumSum::Int = 0
	for update in updates
		inCorrectOrder::Bool = checkUpdateInOrder(update,pageOrderingRules)
		inCorrectOrder ? continue : nothing #skip already correct updates
		while !inCorrectOrder
			for i=1 : length(update)-1
				for j=i+1 : length(update)
					!haskey(pageOrderingRules,update[i]) ? continue : nothing
					if update[j] in pageOrderingRules[update[i]]
						mem::Int = update[i]; update[i] = update[j]; update[j]=mem #switch entries
					end
				end
			end
			inCorrectOrder = checkUpdateInOrder(update,pageOrderingRules)
		end
		midNumSum += update[Int(ceil(length(update)/2))]
	end
	return midNumSum
end

updates, pageOrderingRules = readInput("day05Input")
println("part 1 sum: $(calcMidNumSum(updates,pageOrderingRules))")
println("part 2 sum: $(calcMidNumSumForCorrected(updates,pageOrderingRules))")

:::

[–] [email protected] 1 points 2 weeks ago

Elixir

defmodule AdventOfCode.Solution.Year2024.Day05 do
  use AdventOfCode.Solution.SharedParse

  @impl true
  def parse(input) do
    [rules, pages_list] =
      String.split(input, "\n\n", limit: 2) |> Enum.map(&String.split(&1, "\n", trim: true))

    {for(rule <- rules, do: String.split(rule, "|") |> Enum.map(&String.to_integer/1))
     |> MapSet.new(),
     for(pages <- pages_list, do: String.split(pages, ",") |> Enum.map(&String.to_integer/1))}
  end

  def part1({rules, pages_list}), do: solve(rules, pages_list, false)

  def part2({rules, pages_list}), do: solve(rules, pages_list, true)

  def solve(rules, pages_list, negate) do
    for pages <- pages_list, reduce: 0 do
      total ->
        ordered = Enum.sort(pages, &([&1, &2] in rules))

        if negate != (ordered == pages),
          do: total + Enum.at(ordered, div(length(ordered), 2)),
          else: total
    end
  end
end
[–] [email protected] 1 points 1 week ago* (last edited 1 week ago)

I've got a "smart" solution and a really dumb one. I'll start with the smart one (incomplete but you can infer). I did four different ways to try to get it faster, less memory, etc.

// this is from a nuget package. My Mathy roommate told me this was a topological sort.
// It's also my preferred, since it'd perform better on larger data sets.
return lines
    .AsParallel()
    .Where(line => !IsInOrder(GetSoonestOccurrences(line), aggregateRules))
    .Sum(line => line.StableOrderTopologicallyBy(
            getDependencies: page =>
                aggregateRules.TryGetValue(page, out var mustPreceed) ? mustPreceed.Intersect(line) : Enumerable.Empty<Page>())
        .Middle()
    );

The dumb solution. These comparisons aren't fully transitive. I can't believe it works.

public static SortedSet<Page> Sort3(Page[] line,
    Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules)
{
    // how the hell is this working?
    var sorted = new SortedSet<Page>(new Sort3Comparer(rules));
    foreach (var page in line)
        sorted.Add(page);
    return sorted;
}

public static Page[] OrderBy(Page[] line, Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules)
{
    return line.OrderBy(identity, new Sort3Comparer(rules)).ToArray();
}

sealed class Sort3Comparer : IComparer<Page>
{
    private readonly Dictionary<Page, System.Collections.Generic.HashSet<Page>> _rules;

    public Sort3Comparer(Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules) => _rules = rules;

    public int Compare(Page x, Page y)
    {
        if (_rules.TryGetValue(x, out var xrules))
        {
            if (xrules.Contains(y))
                return -1;
        }

        if (_rules.TryGetValue(y, out var yrules))
        {
            if (yrules.Contains(x))
                return 1;
        }

        return 0;
    }
}
Method Mean Error StdDev Gen0 Gen1 Allocated
Part2_UsingList (literally just Insert) 660.3 us 12.87 us 23.20 us 187.5000 35.1563 1144.86 KB
Part2_TrackLinkedList (wrong now) 1,559.7 us 6.91 us 6.46 us 128.9063 21.4844 795.03 KB
Part2_TopologicalSort 732.3 us 13.97 us 16.09 us 285.1563 61.5234 1718.36 KB
Part2_SortedSet 309.1 us 4.13 us 3.45 us 54.1992 10.2539 328.97 KB
Part2_OrderBy 304.5 us 6.09 us 9.11 us 48.8281 7.8125 301.29 KB
[–] [email protected] 1 points 2 weeks ago (1 children)

Go

Using a map to store u|v relations. Part 2 sorting with a custom compare function worked very nicely

spoiler

func main() {
	file, _ := os.Open("input.txt")
	defer file.Close()
	scanner := bufio.NewScanner(file)

	mapPages := make(map[string][]string)
	rulesSection := true
	middleSumOk := 0
	middleSumNotOk := 0

	for scanner.Scan() {
		line := scanner.Text()
		if line == "" {
			rulesSection = false
			continue
		}

		if rulesSection {
			parts := strings.Split(line, "|")
			u, v := parts[0], parts[1]
			mapPages[u] = append(mapPages[u], v)
		} else {
			update := strings.Split(line, ",")
			isOk := true

			for i := 1; i < len(update); i++ {
				u, v := update[i-1], update[i]
				if !slices.Contains(mapPages[u], v) {
					isOk = false
					break
				}
			}

			middlePos := len(update) / 2
			if isOk {
				middlePage, _ := strconv.Atoi(update[middlePos])
				middleSumOk += middlePage
			} else {
				slices.SortFunc(update, func(u, v string) int {
					if slices.Contains(mapPages[u], v) {
						return -1
					} else if slices.Contains(mapPages[v], u) {
						return 1
					}
					return 0
				})
				middlePage, _ := strconv.Atoi(update[middlePos])
				middleSumNotOk += middlePage
			}
		}
	}

	fmt.Println("Part 1:", middleSumOk)
	fmt.Println("Part 2:", middleSumNotOk)
}

load more comments (1 replies)
[–] [email protected] 1 points 2 weeks ago

Rust

Kinda sorta got day 5 done on time.

use std::cmp::Ordering;

use crate::utils::{bytes_to_num, read_lines};

pub fn solution1() {
    let mut lines = read_input();
    let rules = parse_rules(&mut lines);

    let middle_rules_sum = lines
        .filter_map(|line| {
            let line_nums = rule_line_to_list(&line);
            line_nums
                .is_sorted_by(|&a, &b| is_sorted(&rules, (a, b)))
                .then_some(line_nums[line_nums.len() / 2])
        })
        .sum::<usize>();

    println!("Sum of in-order middle rules = {middle_rules_sum}");
}

pub fn solution2() {
    let mut lines = read_input();
    let rules = parse_rules(&mut lines);

    let middle_rules_sum = lines
        .filter_map(|line| {
            let mut line_nums = rule_line_to_list(&line);

            (!line_nums.is_sorted_by(|&a, &b| is_sorted(&rules, (a, b)))).then(|| {
                line_nums.sort_by(|&a, &b| {
                    is_sorted(&rules, (a, b))
                        .then_some(Ordering::Less)
                        .unwrap_or(Ordering::Greater)
                });

                line_nums[line_nums.len() / 2]
            })
        })
        .sum::<usize>();

    println!("Sum of middle rules = {middle_rules_sum}");
}

fn read_input() -> impl Iterator<Item = String> {
    read_lines("src/day5/input.txt")
}

fn parse_rules(lines: &mut impl Iterator<Item = String>) -> Vec<(usize, usize)> {
    lines
        .take_while(|line| !line.is_empty())
        .fold(Vec::new(), |mut rules, line| {
            let (a, b) = line.as_bytes().split_at(2);
            let a = bytes_to_num(a);
            let b = bytes_to_num(&b[1..]);

            rules.push((a, b));

            rules
        })
}

fn rule_line_to_list(line: &str) -> Vec<usize> {
    line.split(',')
        .map(|s| bytes_to_num(s.as_bytes()))
        .collect::<Vec<_>>()
}

fn is_sorted(rules: &[(usize, usize)], tuple: (usize, usize)) -> bool {
    rules.iter().any(|&r| r == tuple)
}

Reusing my bytes_to_num function from day 3 feels nice. Pretty fun challenge.

[–] [email protected] 1 points 2 weeks ago

TypeScript

Solution

import { AdventOfCodeSolutionFunction } from "./solutions";

type RulesType = Map<number, Array<number>>;

const ReduceMiddleNumbers = (p: number, v: Array<number>) => p + v[(v.length - 1) / 2];

const CheckPages = (pages: Array<number>, rules: RulesType): [true] | [false, number, number] => {
    for (let index = 0; index < pages.length; index++) {
        const page = pages[index]; // [97,61,53,29,13] => 97
        const elementRules = rules.get(page);

        // there are no rules for this number
        if (elementRules === undefined)
            continue;

        for (let ruleIndex = 0; ruleIndex < elementRules.length; ruleIndex++) {
            const rule = elementRules[ruleIndex];
            const rulePos = pages.indexOf(rule);

            // the number specified in the rule doesn't exist in our page
            if (rulePos == -1)
                continue;

            // the number came before our current index, meaning it's bad.
            if (index > rulePos) 
                return [false, index, rulePos];
        }
    }

    return [true];
}


const Reposition = (pages: Array<number>, rules: RulesType) => {
    const newPages = [...pages];
    let res = CheckPages(newPages, rules);
    let i = 0; 
    // this will be public facing api and it's possible to create inf loops so, 10k limit
    while(!res[0] && i++ < 10000) {
        // yes I know the trick, but tricks < semantics
        const moveThisRight = newPages[res[1]];
        const moveThisLeft = newPages[res[2]];
        newPages[res[1]] = moveThisLeft;
        newPages[res[2]] = moveThisRight;

        res = CheckPages(newPages, rules);
    }

    return [...newPages];
}

export const solution_5: AdventOfCodeSolutionFunction = (input) => {
    const [rules_input, content_input] = input.split("\n\n").map(v => v.trim());

    const rules: RulesType = new Map();

    rules_input.split("\n").map(v => v.split("|").map(v => Number(v))).forEach((rule) => {
        const [k, v] = rule;
        if (rules.has(k))
            rules.get(k)!.push(v);
        else
            rules.set(k, [v]);
    });

    const correctArray: Array<Array<number>> = [];
    const incorrectArray: Array<Array<number>> = [];

    content_input.split("\n").map(v => v.split(",").map(v => Number(v))).forEach(pages => {
        if(CheckPages(pages, rules)[0])
            correctArray.push(pages);
        else
            incorrectArray.push(pages);
    });

    const part_1 = correctArray.reduce<number>(ReduceMiddleNumbers, 0);
    const part_2 = incorrectArray.map((v) => Reposition([...v], rules)).reduce<number>(ReduceMiddleNumbers, 0);

    return {
        part_1,
        part_2,
    }
}

[–] hosaka 1 points 2 weeks ago

Zig

const std = @import("std");
const List = std.ArrayList;
const Map = std.AutoHashMap;

const tokenizeScalar = std.mem.tokenizeScalar;
const splitScalar = std.mem.splitScalar;
const parseInt = std.fmt.parseInt;
const print = std.debug.print;
const contains = std.mem.containsAtLeast;
const eql = std.mem.eql;

var gpa = std.heap.GeneralPurposeAllocator(.{}){};
const alloc = gpa.allocator();

const Answer = struct {
    middle_sum: i32,
    reordered_sum: i32,
};

pub fn solve(input: []const u8) !Answer {
    var rows = splitScalar(u8, input, '\n');

    // key is a page number and value is a
    // list of pages to be printed before it
    var rules = Map(i32, List(i32)).init(alloc);
    var pages = List([]i32).init(alloc);
    defer {
        var iter = rules.iterator();
        while (iter.next()) |rule| {
            rule.value_ptr.deinit();
        }
        rules.deinit();
        pages.deinit();
    }

    var parse_rules = true;
    while (rows.next()) |row| {
        if (eql(u8, row, "")) {
            parse_rules = false;
            continue;
        }

        if (parse_rules) {
            var rule_pair = tokenizeScalar(u8, row, '|');
            const rule = try rules.getOrPut(try parseInt(i32, rule_pair.next().?, 10));
            if (!rule.found_existing) {
                rule.value_ptr.* = List(i32).init(alloc);
            }
            try rule.value_ptr.*.append(try parseInt(i32, rule_pair.next().?, 10));
        } else {
            var page = List(i32).init(alloc);
            var page_list = tokenizeScalar(u8, row, ',');
            while (page_list.next()) |list| {
                try page.append(try parseInt(i32, list, 10));
            }
            try pages.append(try page.toOwnedSlice());
        }
    }

    var middle_sum: i32 = 0;
    var reordered_sum: i32 = 0;

    var wrong_order = false;
    for (pages.items) |page| {
        var index: usize = page.len - 1;
        while (index > 0) : (index -= 1) {
            var page_rule = rules.get(page[index]) orelse continue;

            // check the rest of the pages
            var remaining: usize = 0;
            while (remaining < page[0..index].len) {
                if (contains(i32, page_rule.items, 1, &[_]i32{page[remaining]})) {
                    // re-order the wrong page
                    const element = page[remaining];
                    page[remaining] = page[index];
                    page[index] = element;
                    wrong_order = true;

                    if (rules.get(element)) |next_rule| {
                        page_rule = next_rule;
                    }

                    continue;
                }
                remaining += 1;
            }
        }
        if (wrong_order) {
            reordered_sum += page[(page.len - 1) / 2];
            wrong_order = false;
        } else {
            // middle page number
            middle_sum += page[(page.len - 1) / 2];
        }
    }
    return Answer{ .middle_sum = middle_sum, .reordered_sum = reordered_sum };
}

pub fn main() !void {
    const answer = try solve(@embedFile("input.txt"));
    print("Part 1: {d}\n", .{answer.middle_sum});
    print("Part 2: {d}\n", .{answer.reordered_sum});
}

test "test input" {
    const answer = try solve(@embedFile("test.txt"));
    try std.testing.expectEqual(143, answer.middle_sum);
    try std.testing.expectEqual(123, answer.reordered_sum);
}

load more comments
view more: next β€Ί