this post was submitted on 09 Sep 2023
70 points (92.7% liked)

Programming

17538 readers
98 users here now

Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!

Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.

Hope you enjoy the instance!

Rules

Rules

  • Follow the programming.dev instance rules
  • Keep content related to programming in some way
  • If you're posting long videos try to add in some form of tldr for those who don't want to watch videos

Wormhole

Follow the wormhole through a path of communities [email protected]



founded 2 years ago
MODERATORS
 

Having a fast and responsive app is orthogonal to “knowing your big Os”. Unfortunately, most tech companies over-emphasize algorithms in interviews and downplay systems knowledge, and I believe that’s one reason behind sluggish apps and bloated systems.

I’ve seen this play out repeatedly. Interviewers ask a LeetCode-style coding question, which is then followed by the ritual of discussing time and memory complexity. Candidates ace the answers. But then… their “real” code suffers from subtle yet impactful performance problems.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 29 points 1 year ago (1 children)

I think this is the author being humble. jmmv is a long time NetBSD and FreeBSD contributor (tmpfs, ATF, pkg_comp), has worked as a SRE at Google, and has been a developer on projects such as Bazel (build infrastructure). They probably know a thing or two about performance.

Regarding the overall point of the blog, I agree with jmmv. Big O is a measure of efficiency at scale, not a measure of performance.

As someone who teaches Data Structures and Systems Programming courses, I demonstrate this to students early on by showing them multiple solutions to a problem such as how to detect duplicates in a stream of input. After analyzing the time and space complexities of the different solutions, we run it the programs and measure the time. It turns out that the O(nlogn) version using sorting can beat out the O(n) version due to cache locality and how memory actually works.

Big O is a useful tool, but it doesn't directly translate to performance. Understanding how systems work is a lot more useful and important if you really care about optimization and performance.

[–] [email protected] 11 points 1 year ago

Big O is a useful tool, but it doesn't directly translate to performance. Understanding how systems work is a lot more useful and important if you really care about optimization and performance.

This is something I learned pretty early on as a professional developer. I got a computer science degree and was taught data structures, algorithms, and big O. In my first job, I came across a small piece of Java code that was being run a lot that had a small list being searched each time. I figured converting to a HashSet would be faster, but in testing it was actually slower. I forget the exact details, but I learned to test my assumptions about performance and not to just blindly change things.

My degree, for the most part, did not prepare me for working with large, interconnected systems. The only course that came close was an elective called "concurrent programming" which was really just "algorithms, but parallel".