this post was submitted on 26 Aug 2023
818 points (91.4% liked)
Programmer Humor
19688 readers
105 users here now
Welcome to Programmer Humor!
This is a place where you can post jokes, memes, humor, etc. related to programming!
For sharing awful code theres also Programming Horror.
Rules
- Keep content in english
- No advertisements
- Posts must be related to programming or programmer topics
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Off the shelf models do this, yes.
Sophisticated local trained models on expensive private hardware are already dunking on publicly available versions. The problem of hallucination is generally resolved in those contexts
Sure but until I see such a thing I chose not to believe in fairy tales.
Decompiling arbitrary architecture machine code is quite a few levels above everything I've seen so far which is generally pretty basic pattern recognition paired with statistics and training reinforcement.
I'd argue decompiling arbitrary machine code into either another machine code or legible higher level code is in a whol other league than what AO has proven to be capable of.
Especially because with this being 90% accurate is useless.
Again you aren't seeing this because these models are being developed for private enterprise purposes.
Regarding deep machine code analysis, sure, that's gonna take work but the whole hallucination thing is an off the shelf, rookie problem these days
It's not, though. Hallucinations are inherent to the technology, it's not a matter of training. Good training can greatly reduce the likelihood, but cannot solve it.
Training doesn't solve hallucination. I didn't say that
Why does a pre-trained model need expensive private hardware after it was trained, other than to handle API requests faster? Is Open AI training chat-GPT on inferior hardware compared to these sophisticated private versions you mentioned?
The fine tuning, while much more efficient than starting fresh, can still be a large amount of work.
Then consider that your target corpus of data may also be large.
Then consider to do your reasoning tasks across that corpus also takes strong hardware to get production ready response times.
No, openai isn't using inferior hardware, but their model goals, token chunking strategies and overall corpus are generalist in nature.
There are then processing strategies teams are using to go beyond the "memory" limitations gpt 4 has, that provide massive benefits to coherency, essentially anti hallucination and better overall reasoning