this post was submitted on 09 Dec 2023
8 points (100.0% liked)

Machine Learning

499 readers
1 users here now

A community for posting things related to machine learning

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

founded 2 years ago
MODERATORS
 

Paper here : https://arxiv.org/pdf/2312.00752.pdf

Abstract :

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers’ computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.

top 1 comments
sorted by: hot top controversial new old
[–] Akisamb 2 points 1 year ago* (last edited 1 year ago)

You can find a demo here if you want to test a 3 billion parameter model using this architecture that was trained on the pile.

The evolution of attention alternatives is an exciting one, long context lengths are becoming realistic. Here's a graph of the training time vs sequence length from the paper. At the 128K mark we have a 100X speedup compared to attention.

Training: our efficient scan is 40× faster than a standard implementation