this post was submitted on 08 Nov 2023
102 points (94.7% liked)

No Stupid Questions

35393 readers
6 users here now

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That's it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.



Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.



Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

founded 1 year ago
MODERATORS
 

xkcd: Coordinate Precision but pi (π)?

I tried looking for some answer but found mostly

  • People reciting pi
  • People teaching how to memorize pi
  • How to calculate pi using different formula
  • How many digits NASA uses

Update question to be more specific

In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?

0, 3 => you can't make a full circle

1, 3.1 => very wobbly circle

2, 3.14 => perfect hole on a beach

3, 3.142 => ??

4, 3.1416 => ??

5, 3.14159 => ??

Old question below

In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.

But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.

My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm

y=(2πx−(2·3.14x))

y=abs(2πx−(2·3.142x))

y=abs(2πx−(2·3.1416x))

y=(2πx−(2·3.14159x))

Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.

top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 70 points 1 year ago (6 children)

On the NASA front, I believe I read somewhere that NASA determined that only 40 decimal places of pi are required to define a sphere the size of the observable universe to the accuracy of +/- the width of one hydrogen atom. It seems like you could file that under "close enough."

Just using 3 is certainly too low of a precision -- unless you're writing a major work of religious literature, of course. 3.1 is likewise unlikely to result in acceptable accuracy on a terrestrial scale. I've always used 3.14159 which is conveniently exactly what I can remember without looking it up and it's always been good enough for me. I don't think I've ever in my life needed to scribe a circle much larger than a couple of feet across at any rate.

You may be interested in reading this: https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/

[–] [email protected] 20 points 1 year ago

And if my maths is correct, 63 decimal places gets that universe circle's precision to within a Planck length

[–] [email protected] 4 points 1 year ago* (last edited 1 year ago)

Upvoted for religious text reference. Another way to put it would be if you are OK with being off by 33% for insect leg count, you can use 3 for pi.

[–] [email protected] 4 points 1 year ago (4 children)

Then why did we need to put in so much effort to get to the 100 billionth or so? When all we could ever need are 40, maybe 50 if you want?

[–] [email protected] 13 points 1 year ago* (last edited 1 year ago) (2 children)

It is not about actual use when they calculate pi to tthese numbers.

It is about finding out if pi is actually irrational or is it recurring on some level.ie: does it start repeating at some point.

[–] [email protected] 3 points 1 year ago (1 children)

nope, just for testing computers. We know pi is transcendental. Which implies it is irrational. This has been mathematically proven.

We don't need to check. We know that it does not repeat.

[–] [email protected] 7 points 1 year ago

There’s facts about pi we don’t know, though. We have not proved whether or not pi contains every finite sequence of digits. A breakthrough about this will probably have little to do with brute force computing billions of digits of pi, but maybe there can be a clue there. As far as I know we basically just calculate a bunch of pi to flex. It’s the mathematical equivalent of walking around shirtless to show off your abs.

[–] jasory 1 points 10 months ago

Nope. Alexander Yee literally just wrote the program for shits and giggles. (Even the mathematical routines aren't generally useful).

Pi can be proven to be irrational with a pen and paper.

[–] [email protected] 7 points 1 year ago

For the sheer unadulterated thrill of calculating pi.

[–] [email protected] 6 points 1 year ago (1 children)

In addition to what @Pons_Aelius replied, it is also used as a benchmark/flex for computers, as to who can build a beefy enough machine or good enough card to calculate more digits of pi.

[–] jasory 1 points 10 months ago

Nobody optimises their computer build by targeting pi computation. LAPACK benchmarks are far more useful, because linear algebra is actually extensively use; nobody calculates transcendental constants beyond IEE754 precision.

Additionally that's not how hardware is designed.

[–] [email protected] 2 points 1 year ago

Why do most records exist?

[–] [email protected] 3 points 1 year ago

Thank you, I already skimmed through that article before posting. Maybe I failed to put my question into words properly.

I want examples similar to pool/fence circumference in the article. Along the line of "We're building x, and this is the worst rounding we can go, one fewer digit and it will be off by y"

[–] [email protected] 2 points 1 year ago

When we round pi to the integer 3 … to estimate the circumference of an object with a diameter of 100 feet, we will be off by a little over 14 feet.

It seems like ‘3’ is sufficient for real life. It’s probably more precise that I can freehand draw a circle. If I really did need to measure the fencing for a circle with diameter 100’, it’s within the window of padding I would estimate

[–] [email protected] 1 points 1 year ago (1 children)

Now I'm imagining the Holy Pinity.

[–] [email protected] 3 points 1 year ago

For those still in the dark, I'm referencing the bible in 1 Kings 7, 23-26:

And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line of thirty cubits did compass it round about. And under the brim of it round about there were knops compassing it, ten in a cubit, compassing the sea round about: the knops were cast in two rows, when it was cast. It stood upon twelve oxen, three looking toward the north, and three looking toward the west, and three looking toward the south, and three looking toward the east: and the sea was set above upon them, and all their hinder parts were inward. And it was an hand breadth thick, and the brim thereof was wrought like the brim of a cup, with flowers of lilies: it contained two thousand baths.

Those measurements would only work if either the cauldron were not actually circular, or if Pi were equal to 3.

[–] [email protected] 34 points 1 year ago (2 children)

You can calculate this yourself. For example, if you're working on an object that's 1m in diameter and you use 3.14 to compute the circumference, then you can expect errors of up to 1m * (3.142 - 3.14) = 0.002m = 2mm.

[–] [email protected] 5 points 1 year ago

Thank you. After thinking about it overnight, I realized I asked a wrong question. Your answer still helps greatly and get me more than half way to satiate my curiosity.
Tolerance grade and example objects that require different grade/minimum pi accuracy is what I was looking for.

[–] [email protected] 5 points 1 year ago

This is almost the real answer, only in reverse. Find what the appropriate error bounds of your problem is and use continuity (it probably is continuous) to find what decimal expansion you need. Or you could probably just find a solution expressible in pi and pick the decimal approximation needed. Either way, who cares about pi?

[–] [email protected] 23 points 1 year ago (3 children)

Not a lot, and this is why to speedup thing on some architecture, when working with (unsigned)integer you multiply by 355 then divide by 113 (it's like 3.14159292035)

[–] nul 19 points 1 year ago

I forgot the divide by 113 and now I have a huge house.

[–] [email protected] 12 points 1 year ago (1 children)
[–] kogasa 3 points 1 year ago* (last edited 1 year ago)

There are infinitely many. Any sequence of rational numbers converging to pi contains infinitely many. 22/7 and 355/113 are just particularly good ones for their small denominators. You can find such good approximations ("the best rational approximations of a given size") by truncating the continued fraction representation of pi:

pi = [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,…]
pi = 3  + 1/(7 + 1/(15 + 1/(1 + ... )))

These approximations yield:

pi ~ 3
pi ~ 3 + 1/7 = 22/7
pi ~ 3 + 1/(7 + 1/15) = 333/106
pi ~ 3 + 1/(7 + 1/(15 + 1)) = 355/113
pi ~ 3 + 1/(7 + 1/(15 + 1/(1 + 1/292))) = 97591/31065

and so on. Note that by pure coincidence one of the first few terms is quite large (292), so the difference between the corresponding partial expansions is small (1 + 1/292 is close to 1). That's why 355/113 is an unusually good approximation for such a small denominator.

[–] [email protected] 6 points 1 year ago (1 children)

I’m not sure that’s a great trick. You have to remember 6 digits to calculate an approximation accurate to 8 digits.

How many architectures in 2023 still lack a FPU? They were getting pretty rare when I last worked with this stuff 15 years ago.

[–] [email protected] 3 points 1 year ago (1 children)

you have to remember 11 33 55 and put the bar in the middle. It is mainly small MCU like ATMEGA and co. lacking FPU, and yes old stuff like Z80 ,6502, etc.

[–] [email protected] 1 points 1 year ago

Yeah, I guess the Z80 will never die.

[–] [email protected] 14 points 1 year ago (1 children)

The answer to your question is as simple as it is unsatisfying. Additional degrees of precision in construction are only as useful as your means to use them.

If you using your saw can only cut to an accuracy of 1/8 of an inch, than any precision beyond that point is lost as you are unable to actualize it

However if you are using a saw and you're now at the point of your personal skill that you're measuring to the inside or outside of the mark on a ruler, then it is likely time for you to graduate between more precise form of measurement.

https://youtu.be/qE7dYhpI_bI?si=HCtTbklCA18ZieCh

This video covers a lot of the interesting points around measurement and how we can never truly be perfectly accurate with any measurement of any non-discreet metric.

To give a real world example if you are off by a millimeter diameter when building a car engine cylinder it will likely fail.

[–] [email protected] 1 points 1 year ago

IIRC the 15 digit is the size of a hydrogen atom

[–] [email protected] 11 points 1 year ago

Not a direct answer to the question but one thing not noted in other answers is in computing you often work at a higher precision than you need for your final answer as the errors tend to increase each time you do a mathematical operation.

In the world of reasonably powerful hardware (laptops, desktops, servers, smart phones etc.) we'd typically work with 64 bit floating point numbers which gives pi to 15 digits (I think, not at a real computer now so can't check). because it's simple to do so even though we don't need the full precision.

[–] [email protected] 5 points 1 year ago (1 children)

It's been about 20 years since my engineering degree, but we used to memorize to six decimal places. Anything more than that is never used.

[–] [email protected] 3 points 1 year ago (2 children)

I memorize it to 7 digits cause that's the phone number of my mom.

[–] [email protected] 6 points 1 year ago (2 children)

That may not have been a wise thing to say on the internet.

[–] [email protected] 5 points 1 year ago

Well, in the US it's an unlisted number cause the area code 159 doesn't exist in Missouri.
So you'd have to try out all the probable country codes, combined with all of each country's area codes, to call her.

If you reach her, tell her I love her.

[–] [email protected] 2 points 1 year ago

Only 999 area codes to try

[–] [email protected] 1 points 1 year ago (1 children)
[–] [email protected] 2 points 1 year ago

No but she's very round.

[–] [email protected] 5 points 1 year ago (1 children)

When someone wants to be more accurate, they add another digit.

[–] [email protected] 12 points 1 year ago (2 children)
[–] [email protected] 6 points 1 year ago (1 children)

Accurate(closer to the real answer), is not equal to precise(consistent measurements). I think… right?

[–] [email protected] 7 points 1 year ago* (last edited 1 year ago) (1 children)

Yes. I had a science teacher devote a significant portion of a day’s lecture to that exact subject: the difference between accuracy and precision. You got it right.

For example, if you have a digital scale that displays weight to five decimal points, it’s precise. If that scale hasn’t been properly calibrated, though, it will give you a very precise number that isn’t accurate.

[–] [email protected] 4 points 1 year ago

A sniper rifle is more precise than a sawed-off shotgun, but how accurate it is depends on you.

[–] [email protected] 3 points 1 year ago

It is kind of weird that real world measurements always have error to them so you only really know something to a few digits of precision… but mathematical constants like pi can have effectively have unlimited significant figures (but it’s kind of pointless to have more because any real world applications only need a rather small amount of them). I feel kind of similarly about integration. It’s nice to find a closed form solution for an integral, which can make certain calculations a lot faster and more accurate… but in reality if you’re just solving an integral or two for an engineering project you’re probably better off just computing it numerically to the correct number of sig figs. There’s something a little sad about that to me.

[–] [email protected] 3 points 1 year ago

So, in terms of accuracy required, an old structural book I have includes a "functions of numbers" section which has various things including the square, the square root, the log, and the circumference of a circle with that diameter. It shows pi as 3.142. Outside of alignments, I would expect that to be good enough for most civil engineers.

load more comments
view more: next ›