this post was submitted on 15 Dec 2024
14 points (93.8% liked)

Advent Of Code

979 readers
22 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 15: Warehouse Woes

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

top 10 comments
sorted by: hot top controversial new old
[โ€“] [email protected] 2 points 6 days ago

C#

beautiful

public class Day15 : Solver
{
  private char[][] map;
  private int width, height;
  private string movements;

  public void Presolve(string input) {
    var blocks = input.Trim().Split("\n\n").ToList();
    map = blocks[0].Split("\n").Select(line => line.ToArray()).ToArray();
    width = map[0].Length;
    height = map.Length;
    movements = blocks[1];
  }

  public string SolveFirst() {
    var data = map.Select(row => row.ToArray()).ToArray();
    int robot_x = -1, robot_y = -1;
    for (int i = 0; i < width; i++) {
      for (int j = 0; j < height; j++) {
        if (data[j][i] == '@') {
          robot_x = i;
          robot_y = j;
          data[j][i] = '.';
          break;
        }
      }
    }
    foreach (var m in movements) {
      var (dx, dy) = m switch {
        '^' => (0, -1), '>' => (1, 0), 'v' => (0, 1), '<' => (-1, 0),
          _ => (0, 0)
      };
      if ((dx, dy) == (0, 0)) continue;
      var (x, y) = (robot_x + dx, robot_y + dy);
      if (data[y][x] == '#') continue;
      if (data[y][x] == '.') {
        (robot_x, robot_y) = (x, y);
        continue;
      }
      var (end_of_block_x, end_of_block_y) = (x + dx, y + dy);
      while (data[end_of_block_y][end_of_block_x] == 'O') {
        (end_of_block_x, end_of_block_y) = (end_of_block_x + dx, end_of_block_y + dy);
      }
      if (data[end_of_block_y][end_of_block_x] == '.') {
        data[end_of_block_y][end_of_block_x] = 'O';
        data[y][x] = '.';
        (robot_x, robot_y) = (x, y);
      }
    }
    long answer = 0;
    for (int i = 0; i < width; i++) {
      for (int j = 0; j < height; j++) {
        if (data[j][i] == 'O') {
          answer += i + 100 * j;
        }
      }
    }
    return answer.ToString();
  }

  public string SolveSecond() {
    var expanded_data = map.Select(row => row.SelectMany<char, char>(ch => ch switch {
          '#' => ['#', '#'], 'O' => ['[', ']'], '.' => ['.', '.'], '@' => ['@', '.'] }).ToArray()).ToArray();
    int robot_x = -1, robot_y = -1;
    for (int i = 0; i < width * 2; i++) {
      for (int j = 0; j < height; j++) {
        if (expanded_data[j][i] == '@') {
          robot_x = i;
          robot_y = j;
          expanded_data[j][i] = '.';
          break;
        }
      }
    }
    if (robot_x < 0) throw new InvalidDataException();
    foreach (var m in movements) {
      var (dx, dy) = m switch {
        '^' => (0, -1), '>' => (1, 0), 'v' => (0, 1), '<' => (-1, 0),
          _ => (0, 0)
      };
      if ((dx, dy) == (0, 0)) continue;
      var (x, y) = (robot_x + dx, robot_y + dy);
      if (expanded_data[y][x] == '#') continue;
      if (expanded_data[y][x] == '.') {
        (robot_x, robot_y) = (x, y);
        continue;
      }
      if (dy == 0) {
        var (end_of_block_x, end_of_block_y) = (x + dx * 2, y);
        while (expanded_data[end_of_block_y][end_of_block_x] == '[' ||
               expanded_data[end_of_block_y][end_of_block_x] == ']') {
          (end_of_block_x, end_of_block_y) = (end_of_block_x + dx, end_of_block_y);
        }
        if (expanded_data[end_of_block_y][end_of_block_x] == '.') {
          var (fill_start, fill_end) = dx > 0 ? (x + 1, end_of_block_x) : (end_of_block_x, x);
          for (int fill_x = fill_start; fill_x < fill_end; fill_x += 2) {
            expanded_data[y][fill_x] = '[';
            expanded_data[y][fill_x + 1] = ']';
          }
          expanded_data[y][x] = '.';
          (robot_x, robot_y) = (x, y);
        }
        continue;
      }
      List<(int, int)> boxes_to_move = [(x, y)];
      if (expanded_data[y][x] == ']') {
        boxes_to_move.Add((x - 1, y));
      } else {
        boxes_to_move.Add((x + 1, y));
      }
      List<(int, int)> boxes_move_ordered = [];
      bool impossible = false;
      while (boxes_to_move.Count > 0) {
        HashSet<(int, int)> next_boxes = [];
        foreach (var (box_x, box_y) in boxes_to_move) {
          boxes_move_ordered.Add((box_x, box_y));
          if (expanded_data[box_y + dy][box_x] == '.') continue;
          if (expanded_data[box_y + dy][box_x] == '#') {
            impossible = true;
            break;
          }
          next_boxes.Add((box_x, box_y + dy));
          if (expanded_data[box_y + dy][box_x] == ']') {
            next_boxes.Add((box_x - 1, box_y + dy));
          } else {
            next_boxes.Add((box_x + 1, box_y + dy));
          }
        }
        if (impossible) break;
        boxes_to_move = [..next_boxes];
      }
      if (impossible) continue;
      boxes_move_ordered.Reverse();
      foreach (var (box_x, box_y) in boxes_move_ordered) {
        expanded_data[box_y + dy][box_x] = expanded_data[box_y][box_x];
        expanded_data[box_y][box_x] = '.';
      }
      (robot_x, robot_y) = (x, y);
    }
    long answer = 0;
    for (int i = 0; i < width * 2; i++) {
      for (int j = 0; j < height; j++) {
        if (expanded_data[j][i] == '[') {
          answer += i + 100 * j;
        }
      }
    }
    return answer.ToString();
  }
}
[โ€“] [email protected] 2 points 6 days ago

Rust

The work is all in the "push" method. The robot pushes one square, which may chain to additional squares. HashSet probably isn't the optimal data structure, but it's good enough.

Large codeblock

/// Advent of Code 2024, Day 15
/// Copyright 2024 by Alex Utter

use aocfetch;
use std::collections::HashSet;

type Rc = (usize, usize);
type Delta = (isize, isize);
type Moves = Vec<Delta>;

fn add(rc:&Rc, mv:&Delta) -> Rc {
    (rc.0.saturating_add_signed(mv.0),
     rc.1.saturating_add_signed(mv.1))
}

struct Warehouse {
    part2: bool,
    robot: Rc,
    boxes: HashSet<Rc>,
    walls: HashSet<Rc>,
}

impl Warehouse {
    fn new(input: &str, part2: bool) -> (Warehouse, Moves) {
        let mut init = Warehouse {
            part2: part2,
            robot: (0,0),
            boxes: HashSet::new(),
            walls: HashSet::new(),
        };
        let mut moves = Vec::new();
        for (r,line) in input.trim().lines().enumerate() {
            for (c,ch) in line.trim().chars().enumerate() {
                let c2 = if part2 {2*c} else {c};
                match ch {
                    '@' => {init.robot = (r,c2);},
                    'O' => {init.boxes.insert((r,c2));},
                    '#' => {init.walls.insert((r,c2));
                            if part2 {init.walls.insert((r,c2+1));}},
                    '^' => {moves.push((-1, 0));},
                    '>' => {moves.push(( 0, 1));},
                    'v' => {moves.push(( 1, 0));},
                    '<' => {moves.push(( 0,-1));},
                    _   => {},
                }
            }
        }
        return (init, moves);
    }

    fn gps(&self) -> usize {
        self.boxes.iter().map(|(r,c)| 100*r + c).sum()
    }

    fn get_box(&self, rc: &Rc) -> Option<Rc> {
        let ll = add(rc, &(0,-1));
        let rr = rc.clone();
        if self.part2 && self.boxes.contains(&ll) {
            return Some(ll);
        } else if self.boxes.contains(&rr) {
            return Some(rr);
        } else {
            return None;
        }
    }

    fn push(&mut self, mv: &Delta) -> bool {
        // Identify all boxes affected by this push.
        let mut boxes = HashSet::new();     // List of affected boxes
        let mut queue = Vec::new();         // Squares being pushed
        queue.push(add(&self.robot, mv));
        while let Some(rc) = queue.pop() {
            if let Some(bx) = self.get_box(&rc) {
                // Push all square(s) affected by this box.
                let left  = add(&bx, mv);
                let right = add(&left, &(0,1));
                boxes.insert(bx);
                if left != rc {queue.push(left);}
                if self.part2 && right != rc {queue.push(right);}
            } else if self.walls.contains(&rc) {
                // If we hit a wall, the move cannot be applied.
                return false;
            }
        }

        // Move successful, update the warehouse state.
        self.robot = add(&self.robot, mv);
        for bx in boxes.iter() {self.boxes.remove(bx);}
        for bx in boxes.iter() {self.boxes.insert(add(bx, mv));}
        return true;
    }
}

fn part1(input: &str) -> usize {
    let (mut state, moves) = Warehouse::new(input, false);
    for mv in moves.iter() {state.push(mv);}
    return state.gps();
}

fn part2(input: &str) -> usize {
    let (mut state, moves) = Warehouse::new(input, true);
    for mv in moves.iter() {state.push(mv);}
    return state.gps();
}

const EXAMPLE1: &'static str = "\
    ########
    #..O.O.#
    ##@.O..#
    #...O..#
    #.#.O..#
    #...O..#
    #......#
    ########

    <^^>>>vv<v>>v<<";

const EXAMPLE2: &'static str = "\
    ##########
    #..O..O.O#
    #......O.#
    #.OO..O.O#
    #[email protected].#
    #O#..O...#
    #O..O..O.#
    #.OO.O.OO#
    #....O...#
    ##########

    <vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
    vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
    ><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
    <<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
    ^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
    ^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
    >^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
    <><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
    ^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
    v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^";

fn main() {
    // Fetch input from server.
    let input = aocfetch::get_data(2024, 15).unwrap();

    assert_eq!(part1(EXAMPLE1), 2028);
    assert_eq!(part1(EXAMPLE2), 10092);
    assert_eq!(part2(EXAMPLE2), 9021);

    println!("Part 1: {}", part1(&input));
    println!("Part 2: {}", part2(&input));
}

[โ€“] gentooer 2 points 6 days ago* (last edited 6 days ago)

Haskell

Runs in 12 ms. I was very happy with my code for part 1, but will sadly have to rewrite it completely for part 2.

Code

import Control.Monad.State.Lazy
import qualified Data.Map.Strict as M

type Coord = (Int, Int)
data Block = Box | Wall
type Grid = M.Map Coord Block

parse :: String -> ((Coord, Grid), [Coord])
parse s =
    let robot = head
            [ (r, c)
            | (r, row) <- zip [0 ..] $ lines s
            , (c, '@') <- zip [0 ..] row
            ]
        grid = M.fromAscList
            [ ((r, c), val)
            | (r, row) <- zip [0 ..] $ lines s
            , (c, Just val) <- zip [0 ..] $ map f row
            ]
    in  ((robot, grid), go s)
    where
        f 'O' = Just Box
        f '#' = Just Wall
        f _ = Nothing
        go ('^' : rest) = (-1,  0) : go rest
        go ('v' : rest) = ( 1,  0) : go rest
        go ('<' : rest) = ( 0, -1) : go rest
        go ('>' : rest) = ( 0,  1) : go rest
        go (_   : rest) =            go rest
        go [] = []

add :: Coord -> Coord -> Coord
add (r0, c0) (r1, c1) = (r0 + r1, c0 + c1)

moveBoxes :: Coord -> Coord -> Grid -> Maybe Grid
moveBoxes dr r grid = case grid M.!? r of
    Nothing   -> Just grid
    Just Wall -> Nothing
    Just Box  ->
        M.insert (add r dr) Box . M.delete r <$> moveBoxes dr (add r dr) grid

move :: Coord -> State (Coord, Grid) Bool
move dr = state $ \(r, g) -> case moveBoxes dr (add r dr) g of
    Just g' -> (True, (add r dr, g'))
    Nothing -> (False, (r, g))

moves :: [Coord] -> State (Coord, Grid) ()
moves = mapM_ move

main :: IO ()
main = do
    ((robot, grid), movements) <- parse <$> getContents
    let (_, grid') = execState (moves movements) (robot, grid)
    print $ sum [100 * r + c | ((r, c), Box) <- M.toList grid']

[โ€“] [email protected] 2 points 6 days ago* (last edited 6 days ago)

J

Nothing much to say about today's. I think I wrote basically the same code you'd write in Python, just with fewer characters, more of which are punctuation. I did learn a little bit more about how to use J's step debugger, and that / is specifically a right fold, so you can use it on a dyad with arguments of different types as long as the list argument is the left one.

data_file_name =: '15.data'
lines =: cutopen fread data_file_name
NB. instructions start with the first line not containing a # character
start_of_moves =: 0 i.~ '#' e."1 > lines
grid =: ,. > start_of_moves {. lines
start_row =: 1 i.~ '@' e."1 grid
start_col =: '@' i.~ start_row { grid
pos =: start_row, start_col
grid =: '.' ( start_of_moves }. lines
translate_move =: monad define"0
   if. y = '>' do. 0 1
   elseif. y = '^' do. _1 0
   elseif. y = '&lt;' do. 0 _1
   elseif. y = 'v' do. 1 0
   else. 0 0 end.
)
moves =: translate_move move_instructions
NB. pos step move updates grid as needed and returns the new position
step =: dyad define"1 1
   new_pos =. x + y
   if. '#' = (&lt; new_pos) { grid do. x  NB. obstructed by wall
   elseif. '.' = (&lt; new_pos) { grid do. new_pos  NB. free to move
   else.  NB. it's 'O', need to push a stack
      p =. new_pos  NB. pointer to box at end of stack
      while. 'O' = (&lt; p) { grid do. p =. p + y end.
      if. '#' = (&lt; p) { grid do. x  NB. stack is blocked
      else.  NB. move stack
         grid =: 'O.' (&lt; p ,: new_pos)} grid
         new_pos
      end.
   end.
)
score =: dyad define"0 2
   +/ ; ((&lt;"0) 100 * i.#y) +&amp;.> (&lt; @: I. @: = &amp; x)"1 y
)
final_pos =: step~/ |. pos , moves  NB. / is a right fold
result1 =: 'O' score grid

translate_cell =: monad define"0
   if. y = '#' do. '##'
   elseif. y = '.' do. '..'
   elseif. y = 'O' do. '[]'
   else. '@.' end.
)
grid2 =: (,/ @: translate_cell)"1 ,. > start_of_moves {. lines
start_row2 =: 1 i.~ '@' e."1 grid2
start_col2 =: '@' i.~ start_row { grid2
pos =: start_row2, start_col2
grid2 =: '.' (&lt; pos)} grid2  NB. erase the @
NB. (grid; box_pos) try_push dir attempts to push the box at box_pos one
NB. cell in direction dir. box_pos can be either the left or right cell of
NB. the box. it returns (grid; success) where grid is the maybe-changed grid
NB. and success is whether the box moved. if any box that would be pushed
NB. cannot move, this box cannot move either and the grid does not change.
try_push =: dyad define"1 1
   'grid pos' =. x
   if. ']' = (&lt; pos) { grid do. pos =. pos + 0 _1 end.  NB. make pos left cell
   source_cells =. pos ,: pos + 0 1
   if. 0 = {: y do.  NB. moving up or down
      target_cells =. (pos + y) ,: (pos + y + 0 1)  NB. cells we move into
   elseif. y -: 0 _1 do. target_cells =. 1 2 $ pos + y  NB. moving left
   else. target_cells =. 1 2 $ pos + y + 0 1 end.  NB. moving right
   NB. Have to check target cells one at a time because pushing a box up or
   NB. down may vacate the other target cell, or it may not
   trial_grid =. grid
   for_tc. target_cells do.
      NB. if a target cell is blocked by wall, fail
      if. '#' = (&lt; tc) { trial_grid do. grid; 0 return.
      elseif. '[]' e.~ (&lt; tc) { trial_grid do.
         'trial_grid success' =. (trial_grid; tc) try_push y
         if. -. success do. grid; 0 return. end.
      end.
   end.
   NB. at this point either target_cells are clear or we have returned failure,
   NB. so push the box
   grid =. '[]' (&lt;"1 source_cells +"1 y)} '.' (&lt;"1 source_cells)} trial_grid
   grid; 1
)
NB. (grid; pos) step2 move executes the move and returns new (grid; pos)
step2 =: dyad define"1 1
   'grid pos' =. x
   new_pos =. pos + y
   if. '#' = (&lt; new_pos) { grid do. grid; pos  NB. obstructed by wall
   elseif. '.' = (&lt; new_pos) { grid do. grid; new_pos  NB. free to move
   else.  NB. need to push a box
      'new_grid success' =. (grid; new_pos) try_push y
      if. success do. new_grid; new_pos else. grid; pos end.
   end.
)
'final_grid final_pos' =: > (step2~ &amp;.>)/ (&lt;"1 |. moves) , &lt;(grid2; pos)
result2 =: '[' score final_grid
[โ€“] [email protected] 1 points 6 days ago

C

3h+ train ride back home from weekend trip but a little tired and not feeling it much. Finished part 1, saw that part 2 was fiddly programming, left it there.

Finally hacked together something before bed. The part 2 twist required rewriting the push function to be recursive but also a little care and debugging to get that right. Cleaned it up over lunch, happy enough with the solution now!

Code

#include "common.h"

#define GW 104
#define GH 52

struct world { char g[GH][GW]; int px,py; };

static int
can_clear(struct world *w, int x, int y, int dx, int dy)
{
	assert(x>=0); assert(x<GW);
	assert(y>=0); assert(y<GH);
	assert((dx && !dy) || (dy && !dx));

	return
	    (x+dx >= 0 || x+dx < GW) &&
	    (y+dy >= 0 || y+dy < GW) &&
	    (w->g[y][x] == '.' || (
	     w->g[y][x] != '#' && can_clear(w, x+dx,y+dy, dx,dy) &&
	     (!dy || w->g[y][x]!='[' || can_clear(w, x+1,y+dy, 0,dy)) &&
	     (!dy || w->g[y][x]!=']' || can_clear(w, x-1,y,    0,dy)) &&
	     (!dy || w->g[y][x]!=']' || can_clear(w, x-1,y+dy, 0,dy))));
}

/* check can_clear() first! */
static void
clear(struct world *w, int x, int y, int dx, int dy)
{
	assert(x>=0); assert(x<GW); assert(x+dx>=0); assert(x+dx<GW);
	assert(y>=0); assert(y<GH); assert(y+dy>=0); assert(y+dy<GH);

	if (w->g[y][x] == '.')
		return;
	if (dy && w->g[y][x] == ']')
		{ clear(w, x-1,y, dx,dy); return; }

	if (dy && w->g[y][x] == '[') {
		clear(w, x+1,y+dy, dx,dy);
		w->g[y+dy][x+dx+1] = ']';
		w->g[y][x+1] = '.';
	}

	clear(w, x+dx,y+dy, dx,dy);
	w->g[y+dy][x+dx] = w->g[y][x];
	w->g[y][x] = '.';
}

static void
move(struct world *w, int dx, int dy)
{
	if (can_clear(w, w->px+dx, w->py+dy, dx,dy)) {
		clear(w, w->px+dx, w->py+dy, dx,dy);
		w->px += dx;
		w->py += dy;
	}
}

static int
score(struct world *w)
{
	int acc=0, x,y;

	for (y=0; y<GH && w->g[y][0]; y++)
	for (x=0; x<GW && w->g[y][x]; x++)
		if (w->g[y][x] == 'O' || w->g[y][x] == '[')
			acc += 100*y + x;

	return acc;
}

int
main(int argc, char **argv)
{
	static struct world w1,w2;
	int x,y, c;
	char *p;

	if (argc > 1)
		DISCARD(freopen(argv[1], "r", stdin));

	for (y=0; fgets(w1.g[y], GW, stdin); y++) {
		if (!w1.g[y][0] || w1.g[y][0]=='\n')
			break;

		assert(y+1 < GH);
		assert(strlen(w1.g[y])*2+1 < GW);

		for (x=0; w1.g[y][x]; x++)
			if (w1.g[y][x] == 'O') {
				w2.g[y][x*2]   = '[';
				w2.g[y][x*2+1] = ']';
			} else {
				w2.g[y][x*2]   = w1.g[y][x];
				w2.g[y][x*2+1] = w1.g[y][x];
			}

		if ((p = strchr(w1.g[y], '@'))) {
			w1.py = y; w1.px = p-w1.g[y];
			w2.py = y; w2.px = w1.px*2;

			w1.g[w1.py][w1.px]   = '.';
			w2.g[w2.py][w2.px]   = '.';
			w2.g[w2.py][w2.px+1] = '.';
		}
	}

	while ((c = getchar()) != EOF)
		switch (c) {
		case '^': move(&w1, 0,-1); move(&w2, 0,-1); break;
		case 'v': move(&w1, 0, 1); move(&w2, 0, 1); break;
		case '<': move(&w1,-1, 0); move(&w2,-1, 0); break;
		case '>': move(&w1, 1, 0); move(&w2, 1, 0); break;
		}

	printf("15: %d %d\n", score(&w1), score(&w2));
	return 0;
}

https://github.com/sjmulder/aoc/blob/master/2024/c/day15.c

[โ€“] Gobbel2000 2 points 1 week ago

Rust

Part 2 was a bit tricky. Moving into a box horizontally works mostly the same as for part 1, for the vertical case I used two recursive functions. The first recurses from the left and right side for each box just to find out if the entire tree can be moved. The second function actually does the moving in a similar recursive structure, but now with the knowledge that all subtrees can actually be moved.

Lots of moving parts, but at least it could very nicely be debugged by printing out the map from the two minimal examples after each round.

Solution

use euclid::{default::*, vec2};

// Common type for both parts. In part 1 all boxes are BoxL.
#[derive(Clone, Copy)]
enum Spot {
    Empty,
    BoxL,
    BoxR,
    Wall,
}

impl From<u8> for Spot {
    fn from(value: u8) -> Self {
        match value {
            b'.' | b'@' => Spot::Empty,
            b'O' => Spot::BoxL,
            b'#' => Spot::Wall,
            other => panic!("Invalid spot: {other}"),
        }
    }
}

fn parse(input: &str) -> (Vec<Vec<Spot>>, Point2D<i32>, Vec<Vector2D<i32>>) {
    let (field_s, moves_s) = input.split_once("\n\n").unwrap();
    let mut field = Vec::new();
    let mut robot = None;
    for (y, l) in field_s.lines().enumerate() {
        let mut row = Vec::new();
        for (x, b) in l.bytes().enumerate() {
            row.push(Spot::from(b));
            if b == b'@' {
                robot = Some(Point2D::new(x, y).to_i32())
            }
        }
        field.push(row);
    }

    let moves = moves_s
        .bytes()
        .filter(|b| *b != b'\n')
        .map(|b| match b {
            b'^' => vec2(0, -1),
            b'>' => vec2(1, 0),
            b'v' => vec2(0, 1),
            b'<' => vec2(-1, 0),
            other => panic!("Invalid move: {other}"),
        })
        .collect();
    (field, robot.unwrap(), moves)
}

fn gps(field: &[Vec<Spot>]) -> u32 {
    let mut sum = 0;
    for (y, row) in field.iter().enumerate() {
        for (x, s) in row.iter().enumerate() {
            if let Spot::BoxL = s {
                sum += x + 100 * y;
            }
        }
    }
    sum as u32
}

fn part1(input: String) {
    let (mut field, mut robot, moves) = parse(&input);
    for m in moves {
        let next = robot + m;
        match field[next.y as usize][next.x as usize] {
            Spot::Empty => robot = next, // Move into space
            Spot::BoxL => {
                let mut search = next + m;
                let can_move = loop {
                    match field[search.y as usize][search.x as usize] {
                        Spot::BoxL => {}
                        Spot::Wall => break false,
                        Spot::Empty => break true,
                        Spot::BoxR => unreachable!(),
                    }
                    search += m;
                };
                if can_move {
                    robot = next;
                    field[next.y as usize][next.x as usize] = Spot::Empty;
                    field[search.y as usize][search.x as usize] = Spot::BoxL;
                }
            }
            Spot::Wall => {} // Cannot move
            Spot::BoxR => unreachable!(),
        }
    }
    println!("{}", gps(&field));
}

// Transform part 1 field to wider part 2 field
fn widen(field: &[Vec<Spot>]) -> Vec<Vec<Spot>> {
    field
        .iter()
        .map(|row| {
            row.iter()
                .flat_map(|s| match s {
                    Spot::Empty => [Spot::Empty; 2],
                    Spot::Wall => [Spot::Wall; 2],
                    Spot::BoxL => [Spot::BoxL, Spot::BoxR],
                    Spot::BoxR => unreachable!(),
                })
                .collect()
        })
        .collect()
}

// Recursively find out whether or not the robot can move in direction `dir` from `start`.
fn can_move_rec(field: &[Vec<Spot>], start: Point2D<i32>, dir: Vector2D<i32>) -> bool {
    let next = start + dir;
    match field[next.y as usize][next.x as usize] {
        Spot::Empty => true,
        Spot::BoxL => can_move_rec(field, next, dir) && can_move_rec(field, next + vec2(1, 0), dir),
        Spot::BoxR => can_move_rec(field, next - vec2(1, 0), dir) && can_move_rec(field, next, dir),
        Spot::Wall => false,
    }
}

// Recursively execute a move for vertical directions into boxes.
fn do_move(field: &mut [Vec<Spot>], start: Point2D<i32>, dir: Vector2D<i32>) {
    let next = start + dir;
    match field[next.y as usize][next.x as usize] {
        Spot::Empty | Spot::Wall => {}
        Spot::BoxL => {
            do_move(field, next, dir);
            do_move(field, next + vec2(1, 0), dir);
            let move_to = next + dir;
            field[next.y as usize][next.x as usize] = Spot::Empty;
            field[next.y as usize][next.x as usize + 1] = Spot::Empty;
            field[move_to.y as usize][move_to.x as usize] = Spot::BoxL;
            field[move_to.y as usize][move_to.x as usize + 1] = Spot::BoxR;
        }
        Spot::BoxR => {
            do_move(field, next - vec2(1, 0), dir);
            do_move(field, next, dir);
            let move_to = next + dir;
            field[next.y as usize][next.x as usize - 1] = Spot::Empty;
            field[next.y as usize][next.x as usize] = Spot::Empty;
            field[move_to.y as usize][move_to.x as usize - 1] = Spot::BoxL;
            field[move_to.y as usize][move_to.x as usize] = Spot::BoxR;
        }
    }
}

fn part2(input: String) {
    let (field1, robot1, moves) = parse(&input);
    let mut field = widen(&field1);
    let mut robot = Point2D::new(robot1.x * 2, robot1.y);
    for m in moves {
        let next = robot + m;
        match field[next.y as usize][next.x as usize] {
            Spot::Empty => robot = next, // Move into space
            Spot::BoxL | Spot::BoxR if m.y == 0 => {
                let mut search = next + m;
                let can_move = loop {
                    match field[search.y as usize][search.x as usize] {
                        Spot::BoxL | Spot::BoxR => {}
                        Spot::Wall => break false,
                        Spot::Empty => break true,
                    }
                    search += m;
                };
                if can_move {
                    robot = next;
                    // Shift boxes by array remove/insert
                    field[next.y as usize].remove(search.x as usize);
                    field[next.y as usize].insert(next.x as usize, Spot::Empty);
                }
            }
            Spot::BoxL | Spot::BoxR => {
                if can_move_rec(&field, robot, m) {
                    do_move(&mut field, robot, m);
                    robot = next;
                }
            }
            Spot::Wall => {} // Cannot move
        }
    }
    println!("{}", gps(&field));
}

util::aoc_main!();

Also on github

[โ€“] [email protected] 2 points 1 week ago* (last edited 1 week ago)

Dart

canMove does a recursive search and returns all locations that need moving, or none if there's an obstacle anywhere downstream. For part2, that involves checking if there's half of a box in front of us, and if so ensuring that we also check the other half of that box. I don't bother tracking whether we're double-checking as it runs fast enough as is.

import 'dart:math';
import 'package:collection/collection.dart';
import 'package:more/more.dart';

var d4 = <Point<num>>[Point(1, 0), Point(-1, 0), Point(0, 1), Point(0, -1)];
var m4 = '><v^';

solve(List<String> lines, {wide = false}) {
  if (wide) {
    lines = lines
        .map((e) => e
            .replaceAll('#', '##')
            .replaceAll('.', '..')
            .replaceAll('O', '[]')
            .replaceAll('@', '@.'))
        .toList();
  }
  var room = {
    for (var r in lines.takeWhile((e) => e.isNotEmpty).indexed())
      for (var c in r.value.split('').indexed().where((c) => (c.value != '.')))
        Point<num>(c.index, r.index): c.value
  };
  var bot = room.entries.firstWhere((e) => e.value == '@').key;
  var moves = lines.skipTo('').join('').split('');
  for (var d in moves.map((m) => d4[m4.indexOf(m)])) {
    if (didMove(d, bot, room)) bot += d;
  }
  return room.entries
      .where((e) => e.value == '[' || e.value == 'O')
      .map((e) => e.key.x + 100 * e.key.y)
      .sum;
}

bool didMove(Point m, Point here, Map<Point, String> room) {
  var moves = canMove(m, here, room).toSet();
  if (moves.isNotEmpty) {
    var vals = moves.map((e) => room.remove(e)!).toList();
    for (var ms in moves.indexed()) {
      room[ms.value + m] = vals[ms.index];
    }
    return true;
  }
  return false;
}

List<Point> canMove(Point m, Point here, Map<Point, String> room) {
  if (room[here + m] == '#') return [];
  if (!room.containsKey(here + m)) return [here];
  var cm1 = canMove(m, here + m, room);
  if (m.x != 0) return (cm1.isEmpty) ? [] : cm1 + [here];

  List<Point> cm2 = [here];
  if (room[here + m] == '[') cm2 = canMove(m, here + m + Point(1, 0), room);
  if (room[here + m] == ']') cm2 = canMove(m, here + m - Point(1, 0), room);

  return cm1.isEmpty || cm2.isEmpty ? [] : cm1 + cm2 + [here];
}
[โ€“] [email protected] 2 points 1 week ago

TypeScript

Not very optimized code today. Basically just a recursive function

Code

import fs from "fs";

type Point = {x: number, y: number};

enum Direction {
    UP = '^',
    DOWN = 'v',
    LEFT = '<',
    RIGHT = '>'
}

const input = fs.readFileSync("./15/input.txt", "utf-8").split(/[\r\n]{4,}/);
const warehouse: string[][] = input[0]
    .split(/[\r\n]+/)
    .map(row => row.split(""));
const movements: Direction[] = input[1]
    .split("")
    .map(char => char.trim())
    .filter(Boolean)
    .map(char => char as Direction);

// Part 1
console.info("Part 1: " + solve(warehouse, movements));

// Part 2
const secondWarehouse = warehouse.map(row => {
    const newRow: string[] = [];
    for (const char of row) {
        if (char === '#') { newRow.push('#', '#'); }
        else if (char === 'O') { newRow.push('[', ']'); }
        else if (char === '.') { newRow.push('.', '.'); }
        else { newRow.push('@', '.'); }
    }
    return newRow;
});
console.info("Part 2: " + solve(secondWarehouse, movements));

function solve(warehouse: string[][], movements: Direction[]): number {
    let _warehouse = warehouse.map(row => [...row]); // Take a copy to avoid modifying the original
    const robotLocation: Point = findStartLocation(_warehouse);

    for (const move of movements) {
        // Under some very specific circumstances in part 2, tryMove returns false, but the grid has already been modified
        // "Fix" the issue ba taking a copy so we can easily revert all changes made
        // Slow AF of course but rest of this code isn't optimized either, so...
        const copy = _warehouse.map(row => [...row]);
    
        if (tryMove(robotLocation, move, _warehouse)) {
            if (move === Direction.UP) { robotLocation.y--; }
            else if (move === Direction.DOWN) { robotLocation.y++; }
            else if (move === Direction.LEFT) { robotLocation.x--; }
            else { robotLocation.x++; }
        } else {
            _warehouse = copy; // Revert changes
        }
    }

    // GPS
    let result = 0;
    for (let y = 0; y < _warehouse.length; y++) {
        for (let x = 0; x < _warehouse[y].length; x++) {
            if (_warehouse[y][x] === "O" || _warehouse[y][x] === "[") {
                result += 100 * y + x;
            }
        }
    }
    return result;
}

function tryMove(from: Point, direction: Direction, warehouse: string[][], movingPair = false): boolean {
    const moveWhat = warehouse[from.y][from.x];
    if (moveWhat === "#") {
        return false;
    }

    let to: Point;
    switch (direction) {
        case Direction.UP: to = {x: from.x, y: from.y - 1}; break;
        case Direction.DOWN: to = {x: from.x, y: from.y + 1}; break;
        case Direction.LEFT: to = {x: from.x - 1, y: from.y}; break;
        case Direction.RIGHT: to = {x: from.x + 1, y: from.y}; break;
    }

    const allowMove = warehouse[to.y][to.x] === "."
        || (direction === Direction.UP && tryMove({x: from.x, y: from.y - 1}, direction, warehouse))
        || (direction === Direction.DOWN && tryMove({x: from.x, y: from.y + 1}, direction, warehouse))
        || (direction === Direction.LEFT && tryMove({x: from.x - 1, y: from.y}, direction, warehouse))
        || (direction === Direction.RIGHT && tryMove({x: from.x + 1, y: from.y}, direction, warehouse));

    if (allowMove) {
        // Part 1 logic handles horizontal movement of larger boxes just fine. Needs special handling for vertical movement
        if (!movingPair && (direction === Direction.UP || direction === Direction.DOWN)) {
            if (moveWhat === "[" && !tryMove({x: from.x + 1, y: from.y}, direction, warehouse, true)) {
                return false;
            }
            if (moveWhat === "]" && !tryMove({x: from.x - 1, y: from.y}, direction, warehouse, true)) {
                return false;
            }
        }

        // Make the move
        warehouse[to.y][to.x] = moveWhat;
        warehouse[from.y][from.x] = ".";
        return true;
    }
    return false;
}

function findStartLocation(warehouse: string[][]): Point {
    for (let y = 0; y < warehouse.length; y++) {
        for (let x = 0; x < warehouse[y].length; x++) {
            if (warehouse[y][x] === "@") {
                return {x,y};
            }
        }
    }

    throw new Error("Could not find start location!");
}

[โ€“] [email protected] 2 points 1 week ago

Nim

Very fiddly solution with lots of debugging required.

Code

type
  Vec2 = tuple[x,y: int]
  Box = array[2, Vec2]
  Dir = enum
    U = "^"
    R = ">"
    D = "v"
    L = "<"

proc convertPart2(grid: seq[string]): seq[string] =
  for y in 0..grid.high:
    result.add ""
    for x in 0..grid[0].high:
      result[^1] &= (
        if grid[y][x] == 'O': "[]"
        elif grid[y][x] == '#': "##"
        else: "..")

proc shiftLeft(grid: var seq[string], col: int, range: HSlice[int,int]) =
  for i in range.a ..< range.b:
    grid[col][i] = grid[col][i+1]
  grid[col][range.b] = '.'

proc shiftRight(grid: var seq[string], col: int, range: HSlice[int,int]) =
  for i in countDown(range.b, range.a+1):
    grid[col][i] = grid[col][i-1]
  grid[col][range.a] = '.'

proc box(pos: Vec2, grid: seq[string]): array[2, Vec2] =
  if grid[pos.y][pos.x] == '[':
    [pos, (pos.x+1, pos.y)]
  else:
    [(pos.x-1, pos.y), pos]

proc step(grid: var seq[string], bot: var Vec2, dir: Dir) =
  var (x, y) = bot
  case dir
  of U:
    while (dec y; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y-1][bot.x] == 'O': swap(grid[bot.y-1][bot.x], grid[y][x])
    dec bot.y
  of R:
    while (inc x; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y][bot.x+1] == 'O': swap(grid[bot.y][bot.x+1], grid[y][x])
    inc bot.x
  of L:
    while (dec x; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y][bot.x-1] == 'O': swap(grid[bot.y][bot.x-1], grid[y][x])
    dec bot.x
  of D:
    while (inc y; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y+1][bot.x] == 'O': swap(grid[bot.y+1][bot.x], grid[y][x])
    inc bot.y

proc canMoveVert(box: Box, grid: seq[string], boxes: var HashSet[Box], dy: int): bool =
  boxes.incl box
  var left, right = false
  let (lbox, rbox) = (box[0], box[1])
  let lbigBox = box((lbox.x, lbox.y+dy), grid)
  let rbigBox = box((rbox.x, lbox.y+dy), grid)

  if grid[lbox.y+dy][lbox.x] == '#' or
     grid[rbox.y+dy][rbox.x] == '#': return false
  elif grid[lbox.y+dy][lbox.x] == '.': left = true
  else:
    left = canMoveVert(box((lbox.x,lbox.y+dy), grid), grid, boxes, dy)

  if grid[rbox.y+dy][rbox.x] == '.': right = true
  elif lbigBox == rbigBox: right = left
  else:
    right = canMoveVert(box((rbox.x, rbox.y+dy), grid), grid, boxes, dy)

  left and right

proc moveBoxes(grid: var seq[string], boxes: var HashSet[Box], d: Vec2) =
  for box in boxes:
    grid[box[0].y][box[0].x] = '.'
    grid[box[1].y][box[1].x] = '.'
  for box in boxes:
    grid[box[0].y+d.y][box[0].x+d.x] = '['
    grid[box[1].y+d.y][box[1].x+d.x] = ']'
  boxes.clear()

proc step2(grid: var seq[string], bot: var Vec2, dir: Dir) =
  case dir
  of U:
    if grid[bot.y-1][bot.x] == '#': return
    if grid[bot.y-1][bot.x] == '.': dec bot.y
    else:
      var boxes: HashSet[Box]
      if canMoveVert(box((x:bot.x, y:bot.y-1), grid), grid, boxes, -1):
        grid.moveBoxes(boxes, (0, -1))
        dec bot.y
  of R:
    var (x, y) = bot
    while (inc x; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y][bot.x+1] == '[': grid.shiftRight(bot.y, bot.x+1..x)
    inc bot.x
  of L:
    var (x, y) = bot
    while (dec x; grid[y][x] != '#' and grid[y][x] != '.'): discard
    if grid[y][x] == '#': return
    if grid[bot.y][bot.x-1] == ']': grid.shiftLeft(bot.y, x..bot.x-1)
    dec bot.x
  of D:
    if grid[bot.y+1][bot.x] == '#': return
    if grid[bot.y+1][bot.x] == '.': inc bot.y
    else:
      var boxes: HashSet[Box]
      if canMoveVert(box((x:bot.x, y:bot.y+1), grid), grid, boxes, 1):
        grid.moveBoxes(boxes, (0, 1))
        inc bot.y


proc solve(input: string): AOCSolution[int, int] =
  let chunks = input.split("\n\n")
  var grid = chunks[0].splitLines()
  let movements = chunks[1].splitLines().join().join()

  var robot: Vec2
  for y in 0..grid.high:
    for x in 0..grid[0].high:
      if grid[y][x] == '@':
        grid[y][x] = '.'
        robot = (x,y)

  block p1:
    var grid = grid
    var robot = robot
    for m in movements:
      let dir = parseEnum[Dir]($m)
      step(grid, robot, dir)
    for y in 0..grid.high:
      for x in 0..grid[0].high:
        if grid[y][x] == 'O':
          result.part1 += 100 * y + x

  block p2:
    var grid = grid.convertPart2()
    var robot = (robot.x*2, robot.y)
    for m in movements:
      let dir = parseEnum[Dir]($m)
      step2(grid, robot, dir)
      #grid.inspect(robot)

    for y in 0..grid.high:
      for x in 0..grid[0].high:
        if grid[y][x] == '[':
          result.part2 += 100 * y + x


Codeberg Repo

[โ€“] [email protected] 2 points 1 week ago

Haskell

This was a fun one! I'm quite pleased with moveInto, which could be easily extended to support arbitrary box shapes.

Solution

import Control.Monad
import Data.Bifunctor
import Data.List
import Data.Map (Map)
import Data.Map qualified as Map
import Data.Set (Set)
import Data.Set qualified as Set

type C = (Int, Int)

readInput :: String -> (Map C Char, [C])
readInput s =
  let (room, _ : moves) = break null $ lines s
   in ( Map.fromList [((i, j), c) | (i, l) <- zip [0 ..] room, (j, c) <- zip [0 ..] l],
        map dir $ concat moves
      )
  where
    dir '^' = (-1, 0)
    dir 'v' = (1, 0)
    dir '<' = (0, -1)
    dir '>' = (0, 1)

moveInto :: Int -> Set C -> C -> C -> Set C -> Maybe (Set C)
moveInto boxWidth walls (di, dj) = go
  where
    go (i, j) boxes
      | (i, j) `Set.member` walls = Nothing
      | Just j' <- find (\j' -> (i, j') `Set.member` boxes) $ map (j -) [0 .. boxWidth - 1] =
          Set.insert (i + di, j' + dj)
            <$> foldM
              (flip go)
              (Set.delete (i, j') boxes)
              [(i + di, j' + z + dj) | z <- [0 .. boxWidth - 1]]
      | otherwise = Just boxes

runMoves :: (Map C Char, [C]) -> Int -> Int
runMoves (room, moves) scale = score $ snd $ foldl' move (start, boxes) moves
  where
    room' = Map.mapKeysMonotonic (second (* scale)) room
    Just start = fst <$> find ((== '@') . snd) (Map.assocs room')
    walls =
      let ps = Map.keysSet $ Map.filter (== '#') room'
       in Set.unions [Set.mapMonotonic (second (+ z)) ps | z <- [0 .. scale - 1]]
    boxes = Map.keysSet $ Map.filter (== 'O') room'
    move (pos@(i, j), boxes) dir@(di, dj) =
      let pos' = (i + di, j + dj)
       in maybe (pos, boxes) (pos',) $ moveInto scale walls dir pos' boxes
    score = sum . map (\(i, j) -> i * 100 + j) . Set.elems

main = do
  input <- readInput <$> readFile "input15"
  mapM_ (print . runMoves input) [1, 2]