this post was submitted on 04 May 2024
863 points (99.5% liked)
Technology
58303 readers
18 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Well, metallic sodium liberates hydrogen real fast on contact with water, which I guess is tantamount to the same thing.
Yes. But not to the same level as just dropping a brick of pure sodium in a bathtub. In a battery like this there is not pure lithium/sodium/whatever just sloshing around inside. The sodium is tied up being chemically bonded with whatever the anode and cathode materials are. Only a minority of the available sodium is actually free in the form of ions carrying the charge from cathode to anode.
Just as with lithium-ion chemistry batteries, it is vital that the cells remain sealed from the outside because the materials inside will indeed react with air, water, and the water in the air. Exposing the innards will cause a rapid exothermic reaction, i.e. it will get very hot and optionally go off bang.
Okay, that makes a lot of sense. I was asking because I wondered how viable this would be in boats/ships, outdoor areas, off grid cabins, et cetera. Seems like it's basically the same thing, then, right? Like, proper battery maintenance and you're good?