this post was submitted on 03 Dec 2023
420 points (99.8% liked)
196
16597 readers
1889 users here now
Be sure to follow the rule before you head out.
Rule: You must post before you leave.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I wasn't going to reply any more, but I see now you don't understand terms either, so one more time for old time's sake (and maybe you might finally get it)...
You know teachers don't get paid for helping students outside class time right?
No assumption needed. What you are proposing is literally impossible. I've been saying that all along.
Ok...
And so far you haven't been able to show it works for any expression at all! Not even one expression! Just like I said would happen.
And I said you can't, and you haven't! All you did was put brackets around the multiplication to make sure we were still following the only order of operations that works! You have still not shown an actual instance where one can actually do addition first and get a right answer, not one! The idea that one could use addition first as an "alternate order of operations" is thus pure fantasy, just like I've been saying all along. It's literally impossible.
Yes it would! (x+4) is one term - that's what the brackets means - "these things are all together". If you remove that, because "addition first", it's now two terms, so the whole expression is two terms (instead of one), x, and 4(x-2) (which is a mistake people make when they write 8/2(2+2) as 8/2x(2+2) - just turned 2 terms into 3 terms and changed the answer!). Every example you've done so far you've used brackets to escape from having to do addition first, and the very same thing would therefore apply here - no brackets, no escaping "addition first" approach, brackets before addition leads to x+4(x-2)=x+(4x-8) =5x-8, which is not the product of (x+4) and (x-2).
No, the fact that you've not been able to show a single instance of where addition before multiplication would work does. You can't show "a way to solve this in an addition first world" when it's literally impossible for an "addition first world" to exist in the first place.
...and I removed the brackets to show that addition first doesn't work (since you keep putting in brackets to revert "addition first" back to the only order of operations that actually works).
And you've still not shown how. Every example you've used so far you've put in brackets to your (supposed) "addition first" so that we were evaluating it using the only order of operations that works. In other words, no, you can't use "addition first" to “study of the measurement, properties, and relationships of quantities and sets using numbers and symbols” - you used the regular order of operations to do it! You haven't shown a single example of where addition first could be used to do it.
You need to use an order of operations that gives a correct answer, of which there is only one - a fact you keep trying to avoid.
No it wouldn't, cos now you're ignoring terms as well. As per my earlier working out, it would simplify to 5x-8 unless you also changed the definition of terms. Do you see yet why it's impossible to have an "alternate order of operations"?
And you've completely failed to show a single instance where this is true - which is what I've been saying all along, it's impossible to have another set of order of operations that works. You keep pre-supposing it's possible, but then add brackets to the multiplications so that we follow the actual correct order of operations, the only order of operations that works.
And you've still failed to solve a single problem using addition first, because it's still a fact it's literally impossible to do so.
by using the only order of operations that works. i.e. multiplication before addition.
Now I really am done - I'm not going any further down this rabbit hole of whatever other Maths you may not understand either (this post it was Terms - who knows what's next)...