this post was submitted on 21 Sep 2023
19 points (75.7% liked)
Autism
6868 readers
1 users here now
A community for respectful discussion and memes related to autism acceptance. All neurotypes are welcome.
We have created our own instance! Visit Autism Place the following community for more info.
Community:
Values
- Acceptance
- Openness
- Understanding
- Equality
- Reciprocity
- Mutuality
- Love
Rules
- No abusive, derogatory, or offensive post/comments e.g: racism, sexism, religious hatred, homophobia, gatekeeping, trolling.
- Posts must be related to autism, off-topic discussions happen in the matrix chat.
- Your posts must include a text body. It doesn't have to be long, it just needs to be descriptive.
- Do not request donations.
- Be respectful in discussions.
- Do not post misinformation.
- Mark NSFW content accordingly.
- Do not promote Autism Speaks.
- General Lemmy World rules.
Encouraged
- Open acceptance of all autism levels as a respectable neurotype.
- Funny memes.
- Respectful venting.
- Describe posts of pictures/memes using text in the body for our visually impaired users.
- Welcoming and accepting attitudes.
- Questions regarding autism.
- Questions on confusing situations.
- Seeking and sharing support.
- Engagement in our community's values.
- Expressing a difference of opinion without directly insulting another user.
- Please report questionable posts and let the mods deal with it. Chat Room
- We have a chat room! Want to engage in dialogue? Come join us at the community's Matrix Chat.
.
Helpful Resources
- Are you seeking education, support groups, and more? Take a look at our list of helpful resources.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Ok... how can you know that, though? The slit test is always the proof I'm pointed to, but that doesn't explain in any way how a particle is essentially stateless until observed, only that how it is observed changes the outcome. How would you know it is stateless until you look at it? You can't know for sure until you measure it!
The whole thing seems less like physics and more like philosophy.
There is no absolute "knowing" in science. Physicists constructed a model and that model is then used to make predictions which are checked againt experiments. And so far quantum mechanics turns out to be an exceptional accurate model.
It doesn't mean that we know it is true. But so far sticking to this weird model with all it's quirks allowed us to build amazing gadgets
Other than some issues with wording (i.e., the misuse of "state"), those are some good questions.
It turns out under reasonable assumptions that any theory that attempts to always assign deterministically evolving "hidden" definite values to measurable quantities while reproducing the predictions of quantum mechanics must be nonlocal. This does not mean that such nonlocal hidden variables theories are necessarily wrong, but introduces issues such as the incompatibility of the dynamics of the hidden variables with the theory of relativity. However, the "standard" Copenhagen interpretation has the same issue of nonlocality in the case of wavefunction collapse.
A second issue with such hidden variables theories that are faithful to the predictions of standard quantum mechanics is that they are often essentially standard quantum mechanics with added complexity in the form of the hidden variable dynamics, which would be undesirable from the perspective of Occam's razor, which disfavors unnecessary complexity.
A third issue is the question of how measurement of a quantity would reveal the true, definite hidden variable value. The Copenhagen interpretation has a similar issue with the question of how measurement causes wavefunction collapse.
One may ponder the hidden variable theories that disagree with the predictions of standard quantum mechanics, but experiments investigating these differences in predictions have repeatedly favored the predictions of standard quantum mechanics to an overwhelming degree.
The particle does have a state before it's observed—it just might not be an eigenstate with respect to the variable that shall be measured, but rather there is a well-defined distribution in said variable which comes from the wavefunction.