this post was submitted on 20 May 2025
42 points (97.7% liked)
Asklemmy
48107 readers
832 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 6 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Just pointing this out - we don't live in a deterministic reality. Quantum interactions are inherently probabilistic and can't be predetermined. This usually doesn't matter, but you can chain larger classical systems onto quantum interactions (i.e. Schrödingers cat), which makes them non-deterministic as well.
Thanks for the reply.
"inherently probabilistic and can't be determined" is just another way of saying "random" or "we don't know yet".
If reality was not deterministic, the reliability of models and predictions in physics would be upended.
Well yes, it means "random". Of course there's always a chance that we're just missing something fundamental, but it would mean that literally every model we have is completely wrong. Unless we find indications for that (and there don't seem to be any so far) I think it's fair to assume that quantum interactions are actually random.
No, because reality is not deterministic, yet the reliability of models and predictions in physics is not upended. There simply are enough of these interactions happening that, in the "macro" world, we can talk about them deterministically, since they are probabilistic. But that doesn't mean the "micro" interactions are deterministic, and it also doesn't mean it's impossible for a "macro" interaction to be non-deterministic - again, the example of Schrödingers cat comes to mind.
You could literally build a non-deterministic experiment right now if you wanted to.
In a sense it is deterministic. It's just when most people think of determinism, they think of conditioning on the initial state, and that this provides sufficient constraints to predict all future states. In quantum mechanics, conditioning on the initial state does not provide sufficient constraints to predict all future states and leads to ambiguities. However, if you condition on both the initial state and the final state, you appear to get determinstic values for all of the observables. It seems to be deterministic, just not forwards-in-time deterministic, but "all-at-once" deterministic. Laplace's demon would just need to know the very initial conditions of the universe and the very final conditions.
Hm, I'm not sure if I understand the abstract correctly.
Say I build two Schrödingers cat experiments next to each other, and connect them so that each vial dispersing the poison also makes the other vial disperse poison. I go away, and come back to both vials having triggered and both nuclear decays having occurred. How could I determine the path the whole system took?