this post was submitted on 19 Dec 2024
8 points (78.6% liked)

Advent Of Code

995 readers
4 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 19 - Linen Layout

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] Gobbel2000 2 points 2 weeks ago (1 children)

Rust

First part is solved by making a regex of the available towels, like ^(r|wr|bg|bwu|rb|gb|br)*$ for the example. If a design matches it, then it can be made. This didn't work for the second part, which is done using recursion and memoization instead. Again, it was quite surprising to see such a high solution number. 32 bits were not enough (thanks, debug mode overflow detection).

Solution

use regex::Regex;
use rustc_hash::FxHashMap;

fn parse(input: &str) -> (Vec<&str>, Vec<&str>) {
    let (towels, designs) = input.split_once("\n\n").unwrap();
    (towels.split(", ").collect(), designs.lines().collect())
}

fn part1(input: String) {
    let (towels, designs) = parse(&input);
    let pat = format!("^({})*$", towels.join("|"));
    let re = Regex::new(&pat).unwrap();
    let count = designs.iter().filter(|d| re.is_match(d)).count();
    println!("{count}");
}

fn n_arrangements<'a>(
    design: &'a str,
    towels: &[&str],
    cache: &mut FxHashMap<&'a str, u64>,
) -> u64 {
    if design.is_empty() {
        return 1;
    }
    if let Some(n) = cache.get(design) {
        return *n;
    }
    let n = towels
        .iter()
        .filter(|t| design.starts_with(*t))
        .map(|t| n_arrangements(&design[t.len()..], towels, cache))
        .sum();
    cache.insert(design, n);
    n
}

fn part2(input: String) {
    let (towels, designs) = parse(&input);
    let sum: u64 = designs
        .iter()
        .map(|d| n_arrangements(d, &towels, &mut FxHashMap::default()))
        .sum();
    println!("{sum}");
}

util::aoc_main!();

Also on github

[โ€“] CameronDev 2 points 2 weeks ago (1 children)

How fast was the regex approach?

[โ€“] Gobbel2000 3 points 2 weeks ago (1 children)

About 3ms. A manual implementation might be a bit faster, but not by much. The regex crate is quite optimized for pretty much these problems.

[โ€“] CameronDev 2 points 2 weeks ago* (last edited 2 weeks ago) (1 children)

Wow, that is very fast, nice. I was happy with 120ms, seems I'm leaving a lot of performance on the table.

Edit: Regex cut my total time in half, but I am measuring the whole execution, still a massive improvement.

[โ€“] Gobbel2000 3 points 2 weeks ago (1 children)

The 3ms are for part 1 only, part 2 takes around 27ms. But I see that our approaches there are very similar. One difference that might make an impact is that you copy the substrings for inserting into the hashmap into Strings.

[โ€“] CameronDev 2 points 2 weeks ago* (last edited 2 weeks ago)

Removing the string copy with the length->count array from @sjmulder saved me 20ms, so not super significant. I'll have to play the the profiler and see what I am doing wrong.

I think your approach looks a lot more Rust-like, which I like. Part 1 in 4 lines is very nice.