this post was submitted on 13 Dec 2024
18 points (90.9% liked)

Advent Of Code

980 readers
19 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 13: Claw Contraption

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 3 points 1 week ago* (last edited 1 week ago) (11 children)

Python

Execution time: ~<1 millisecond (800 microseconds on my machine)

Good old school linear algebra from middle school. we can solve this really really fast. With minimal changes from part 1!

FastCode[ paste ]

from time import perf_counter_ns
import string

def profiler(method):
    def wrapper_method(*args: any, **kwargs: any) -> any:
        start_time = perf_counter_ns()
        ret = method(*args, **kwargs)
        stop_time = perf_counter_ns() - start_time
        time_len = min(9, ((len(str(stop_time))-1)//3)*3)
        time_conversion = {9: 'seconds', 6: 'milliseconds', 3: 'microseconds', 0: 'nanoseconds'}
        print(f"Method {method.__name__} took : {stop_time / (10**time_len)} {time_conversion[time_len]}")
        return ret

    return wrapper_method

@profiler
def main(input_data):
    part1_total_cost = 0
    part2_total_cost = 0
    for machine in input_data:
        Ax,Ay,Bx,By,Px,Py = [ int(l[2:]) for l in machine.split() if l[-1] in string.digits ]
        y,r = divmod((Ay * Px - Ax * Py), (Ay * Bx - Ax * By))
        if r == 0:
            x,r = divmod(Px - Bx * y, Ax)
            if r == 0:
                part1_total_cost += 3*x + y
        y,r = divmod((Ay * (Px+10000000000000) - Ax * (Py+10000000000000)), (Ay * Bx - Ax * By))
        if r == 0:
            x,r = divmod((Px+10000000000000) - Bx * y, Ax)
            if r == 0:
                part2_total_cost += 3*x + y

    return part1_total_cost,part2_total_cost

if __name__ == "__main__":
    with open('input', 'r') as f:
        input_data = f.read().strip().replace(',', '').split('\n\n')
    part_one, part_two = main(input_data)
    print(f"Part 1: {part_one}\nPart 2: {part_two}")

[โ€“] Sparrow_1029 2 points 1 week ago (1 children)

This is a really excellent, clean solution! Would you mind breaking down how the piece of linear algebra works (for a shmo like me who doesn't remember that stuff frum school heh ๐Ÿ˜…)

[โ€“] [email protected] 3 points 1 week ago

https://lemmy.world/comment/13950499

take the two equations, solve for y, and make sure y is fully divisible.

load more comments (9 replies)