this post was submitted on 19 Jun 2024
201 points (98.6% liked)

Technology

58303 readers
11 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 30 points 4 months ago (3 children)

Even a perfect sensor will accumulate errors in the nav solution over time because there's no such thing as a perfect gravity model. No free-running INS will ever replace GPS long term. This shit is so frustrating to see in the press.

[–] [email protected] 27 points 4 months ago (1 children)

It will definitely require corrections from GPS or other systems, but if made sufficiently accurate; it could be months or even years before the accumulated errors necessitate a correction.

What seems more concerning to me is a system like this would require 100% up time between outside corrections.

A gps receiver can acquire its position from a completely powered off state. Inertial guidence though, needs to be told its current position; then it can keep track of where it goes from there. If there's any hiccup with power, you've completely lost your location fix and can't reacquire it alone.

Put the two together though, and the inertial guidence can accurately fill in the gaps between gps service while also getting regular updates/corrections when you do have that signal available.

[–] [email protected] 7 points 4 months ago

I don't think you'll ever see an INS going months without needing a correction. Imperfect gravitational compensation applies directly to the specific force measurements and those errors are then accumulated twice.

[–] [email protected] 8 points 4 months ago (1 children)

Especially since, to calculate current location, it needs an input of initial location (i.e. it needs GPS coordinates to begin with so it can track direction and velocity relative to that initial position). You can’t replace something you depend upon.

[–] [email protected] 11 points 4 months ago (1 children)

the initial location doesn't need to be GPS, just a known anchor location. Which is trivial to implement in the case of trains, since stations don't move that drastically.

[–] [email protected] 3 points 4 months ago (1 children)

But wouldn't you scramble the precision with that? Stations can be quite big and anchoring to the station location means you already start with an offset to your location.

Depending on the accuracy over time, they could pinpoint a location while the user is sleeping and than use that as an anchor for the day.

But everything about that is speculative; let's see where this goes first.

[–] [email protected] 7 points 4 months ago* (last edited 4 months ago) (1 children)

you're thinking anywhere on the platform, I'm suggesting a known place near a station by which the train passes and its location - at that moment - is known.

All the system needs is a ground-truth location after a certain amount of time. GPS is just a cheap and convenient way to do it almost anywhere, but this location correction doesn't need to be satellite-based at all.

[–] [email protected] 1 points 4 months ago

Yeah maybe that could work. I definitely agree that there's ways to get good anchor points. Maybe through cross-check with wireless networks even.

[–] [email protected] 2 points 4 months ago

Yeah, more accurate dead reckoning is always useful, but you'll still need some sort of of ground-based or satellite based navigation system if you're using this for any system that requires any reasonable amount of accuracy.