this post was submitted on 01 Dec 2023
37 points (91.1% liked)

Advent Of Code

981 readers
34 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
37
submitted 1 year ago* (last edited 1 year ago) by Ategon to c/advent_of_code
 

Welcome everyone to the 2023 advent of code! Thank you all for stopping by and participating in it in programming.dev whether youre new to the event or doing it again.

This is an unofficial community for the event as no official spot exists on lemmy but ill be running it as best I can with Sigmatics modding as well. Ill be running a solution megathread every day where you can share solutions with other participants to compare your answers and to see the things other people come up with


Day 1: Trebuchet?!


Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ or pastebin (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


🔒This post will be unlocked when there is a decent amount of submissions on the leaderboard to avoid cheating for top spots

🔓 Edit: Post has been unlocked after 6 minutes

(page 2) 20 comments
sorted by: hot top controversial new old
[–] [email protected] 2 points 1 year ago

Python

Questions and feedback welcome!

import re

from .solver import Solver

class Day01(Solver):
  def __init__(self):
    super().__init__(1)
    self.lines = []

  def presolve(self, input: str):
    self.lines = input.rstrip().split('\n')

  def solve_first_star(self):
    numbers = []
    for line in self.lines:
      digits = [ch for ch in line if ch.isdigit()]
      numbers.append(int(digits[0] + digits[-1]))
    return sum(numbers)

  def solve_second_star(self):
    numbers = []
    digit_map = {
      "one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
      "six": 6, "seven": 7, "eight": 8, "nine": 9, "zero": 0,
      }
    for i in range(10):
      digit_map[str(i)] = i
    for line in self.lines:
      digits = [digit_map[digit] for digit in re.findall(
          "(?=(one|two|three|four|five|six|seven|eight|nine|[0-9]))", line)]
      numbers.append(digits[0]*10 + digits[-1])
    return sum(numbers)
[–] [email protected] 1 points 1 year ago (1 children)

My solution is not pretty at all, but it does the job: Golang

[–] [email protected] 1 points 1 year ago

APL

spoiler

args ← {1↓⍵/⍨∨\⍵∊⊂'--'} ⎕ARG
inputs ← ⎕FIO[49]¨ args

words ← 'one' 'two' 'three' 'four' 'five' 'six' 'seven' 'eight' 'nine'
digits ← '123456789'

part1 ← {↑↑+/{(10×↑⍵)+¯1↑⍵}¨{⍵~0}¨+⊃(⍳9)+.×digits∘.⍷⍵}
"Part 1: ", part1¨ inputs

part2 ← {↑↑+/{(10×↑⍵)+¯1↑⍵}¨{⍵~0}¨+⊃(⍳9)+.×(words∘.⍷⍵)+digits∘.⍷⍵}
"Part 2: ", part2¨ inputs

)OFF

[–] [email protected] 1 points 1 year ago* (last edited 1 year ago)

[Language: Lean4]

I'll only post the actual parsing and solution. I have written some helpers which are in other files, as is the main function. For the full code, please see my github repo.

Part 2 is a bit ugly, but I'm still new to Lean4, and writing it this way (structural recursion) just worked without a proof or termination.

Solution

def parse (input : String) : Option $ List String :=
  some $ input.split Char.isWhitespace |> List.filter (not ∘ String.isEmpty)

def part1 (instructions : List String) : Option Nat :=
  let firstLast := λ (o : Option Nat × Option Nat) (c : Char) ↦
    let digit := match c with
    | '0' => some 0
    | '1' => some 1
    | '2' => some 2
    | '3' => some 3
    | '4' => some 4
    | '5' => some 5
    | '6' => some 6
    | '7' => some 7
    | '8' => some 8
    | '9' => some 9
    | _ => none
    if let some digit := digit then
      match o.fst with
      | none => (some digit, some digit)
      | some _ => (o.fst, some digit)
    else
      o
  let scanLine := λ (l : String) ↦ l.foldl firstLast (none, none)
  let numbers := instructions.mapM ((uncurry Option.zip) ∘ scanLine)
  let numbers := numbers.map λ l ↦ l.map λ (a, b) ↦ 10*a + b
  numbers.map (List.foldl (.+.) 0)

def part2 (instructions : List String) : Option Nat :=
  -- once I know how to prove stuff propery, I'm going to improve this. Maybe.
  let instructions := instructions.map String.toList
  let updateState := λ (o : Option Nat × Option Nat) (n : Nat) ↦ match o.fst with
    | none => (some n, some n)
    | some _ => (o.fst, some n)
  let extract_digit := λ (o : Option Nat × Option Nat) (l : List Char) ↦
    match l with
    | '0' :: _ | 'z' :: 'e' :: 'r' :: 'o' :: _ => (updateState o 0)
    | '1' :: _ | 'o' :: 'n' :: 'e' :: _ => (updateState o 1)
    | '2' :: _ | 't' :: 'w' :: 'o' :: _ => (updateState o 2)
    | '3' :: _ | 't' :: 'h' :: 'r' :: 'e' :: 'e' :: _ => (updateState o 3)
    | '4' :: _ | 'f' :: 'o' :: 'u' :: 'r' :: _ => (updateState o 4)
    | '5' :: _ | 'f' :: 'i' :: 'v' :: 'e' :: _ => (updateState o 5)
    | '6' :: _ | 's' :: 'i' :: 'x' :: _ => (updateState o 6)
    | '7' :: _ | 's' :: 'e' :: 'v' :: 'e' :: 'n' :: _ => (updateState o 7)
    | '8' :: _ | 'e' :: 'i' :: 'g' :: 'h' :: 't' :: _ => (updateState o 8)
    | '9' :: _ | 'n' :: 'i' :: 'n' :: 'e' :: _ => (updateState o 9)
    | _ => o
  let rec firstLast := λ (o : Option Nat × Option Nat) (l : List Char) ↦
    match l with
    | [] => o
    | _ :: cs => firstLast (extract_digit o l) cs
  let scanLine := λ (l : List Char) ↦ firstLast (none, none) l
  let numbers := instructions.mapM ((uncurry Option.zip) ∘ scanLine)
  let numbers := numbers.map λ l ↦ l.map λ (a, b) ↦ 10*a + b
  numbers.map (List.foldl (.+.) 0)

[–] declination 1 points 1 year ago

I decided to learn zig this year. Usually I solve both parts in the same source file, but it was annoying so here part 1 and part 2

load more comments
view more: ‹ prev next ›