this post was submitted on 15 May 2024
11 points (100.0% liked)
Daily Maths Challenges
189 readers
1 users here now
Share your cool maths problems.
Complete a challenge:
- Post your solution in comments, if it is exactly the same as OP's solution, let us know.
- Have fun.
Post a challenge:
- Doesn't have to be original, as long as it is not a duplicate.
- Challenges not riddles, if the post is longer than 3 paragraphs, reconsider yourself.
- Optionally include solution in comments, let it be clear this is not a homework help forums.
- Tag [unsolved] if you don't have a solution yet.
- Please include images, if your question includes complex symbols, attach a render of the maths.
Feel free to contribute to a series by DMing the OP, or start your own challenge series.
founded 6 months ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
solution
Here's a pretty minimum effort hand-wavy proof.A function is differentiable on an interval if it's differentiable at every point in that interval. Similarly, a function is continuous on an interval if it's continuous at every point in that interval. So I'll show that differentiability at a point implies continuity at that point, from which differentiability on an interval implying continuity on an interval will automatically follow.
A function is differentiable at x = a if lim (x → a) (f(x) - f(a)) / (x - a) exists, so let us assume it does exist.
In that limit, the denominator equals 0 at the limit point. Yet, we know by assumption that the limit exists. This implies the numerator also equals 0 at the limit point, because the only way for our denominator to equal 0 at the limit point, and still have the limit exist, is for the expression to be indeterminate, rather than undefined. The only indeterminate form with 0 in the denominator is 0/0.
So we can assume lim (x → a) (f(x) - f(a) = 0. As f(a) is a constant value, this implies lim (x → a) f(x) = f(a) - so the function is continuous at x = a.