this post was submitted on 07 Jul 2023
11 points (100.0% liked)

Actually Useful AI

2001 readers
7 users here now

Welcome! 🤖

Our community focuses on programming-oriented, hype-free discussion of Artificial Intelligence (AI) topics. We aim to curate content that truly contributes to the understanding and practical application of AI, making it, as the name suggests, "actually useful" for developers and enthusiasts alike.

Be an active member! 🔔

We highly value participation in our community. Whether it's asking questions, sharing insights, or sparking new discussions, your engagement helps us all grow.

What can I post? 📝

In general, anything related to AI is acceptable. However, we encourage you to strive for high-quality content.

What is not allowed? 🚫

General Rules 📜

Members are expected to engage in on-topic discussions, and exhibit mature, respectful behavior. Those who fail to uphold these standards may find their posts or comments removed, with repeat offenders potentially facing a permanent ban.

While we appreciate focus, a little humor and off-topic banter, when tasteful and relevant, can also add flavor to our discussions.

Related Communities 🌐

General

Chat

Image

Open Source

Please message @[email protected] if you would like us to add a community to this list.

Icon base by Lord Berandas under CC BY 3.0 with modifications to add a gradient

founded 1 year ago
MODERATORS
 

I think software engineering will spawn a new subdiscipline, specializing in applications of AI and wielding the emerging stack effectively, just as “site reliability engineer”, “devops engineer”, “data engineer” and “analytics engineer” emerged.

The emerging (and least cringe) version of this role seems to be: AI Engineer.

@AutoTLDR

you are viewing a single comment's thread
view the rest of the comments
[–] kraegar 4 points 1 year ago

I feel this has been the case already for more time than people think. AI/ML has been its own subspecialty of SWE for years. There are some low hanging fruit that using sklearn or copy and pasting from stack overflow will let you do, but for the most part the advanced features require professional specialization.

One thing that bothers me is that subject matter expertise is often ignored. General AI researchers can be helpful, but often times having SME context AND and AI skillset will be way more valuable. For LLMs it may be fine since they produce a generalized solution to a general problem, but application specific tasks require relevant knowledge and an understanding of pros/cons within the use case.

It feels like a hot take, but I think that undergraduate degrees should establish a base knowledge in a domain and then AI introduced at the graduate-level. Even if you are not using the undergraduate domain knowledge, it should be transferable to other domains and help you to understand how to solve problems with AI within the context of a professional domain.