this post was submitted on 27 Sep 2023
97 points (95.3% liked)

Technology

68772 readers
4055 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] rubikcuber 37 points 2 years ago (4 children)

The research specifically looked at lossless algorithms, so gzip

"For example, the 70-billion parameter Chinchilla model impressively compressed data to 8.3% of its original size, significantly outperforming gzip and LZMA2, which managed 32.3% and 23% respectively."

However they do say that it's not especially practical at the moment, given that gzip is a tiny executable compared to the many gigabytes of the LLM's dataset.

[–] [email protected] 9 points 2 years ago (2 children)

Do you need the dataset to do the compression? Is the trained model not effective on its own?

[–] [email protected] 12 points 2 years ago (1 children)

Well from the article a dataset is required, but not always the heavier one.

Tho it doesn't solve the speed issue, where the llm will take a lot more time to do the compression.

gzip can compress 1GB of text in less than a minute on a CPU, an LLM with 3.2 million parameters requires an hour to compress

load more comments (1 replies)