this post was submitted on 03 Aug 2023
104 points (62.9% liked)
Technology
58303 readers
9 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That doesn't make a lot of sense to me.
Humans can only hear up to about 20kHz, so you're not getting much benefit above about double that.
Even assuming that humans could hear frequencies hundreds of times higher, audio isn't generally available sampled at 11.2 Mhz. If you're getting music, the recording and audio engineering work, the microphones, etc, aren't designed to accurately capture data at high frequencies.
Even assuming that none of that were the case, the audio engineer and artists weren't trying to make audio that sounds good at that frequency (which they can't hear either). The music doesn't intrinsically have some aesthetically-pleasing quality that you can extract; they were the ones who added it, and they did that via making judgments using their own senses, which can't hear this.
Even aside from that, it doesn't look like this comes with headphones. Whatever you are plugging into this has to induce vibration in the air for it to make it to your ears, and probably does not have a meaningful frequency response at that frequency.
And it makes even less sense if your starting audio has actually thrown out data in frequencies that humans can hear by using lossy compression there, even if we aren't terribly sensitive to those.
I think the article is just incorrect. Sony probably means it can just decide .dsf files. And you are confusing 1 bit DSD with 16 bit PCM. The most common DSD format is DSD64 2.8Mhz which is equivalent to 16 bit /176khz, 24 bit/117khz, or 32 bit/ 88.2khz. And the microphones and instruments do work at these high frequencies.
No, the product page mentions the "DSD Remastering Engine", which says the same thing as the article. They probably just mean they're using a 1-bit DAC, and are trying to pass that off as a selling point. Although the article did lose the "1-bit" part.
Then I stand corrected, although the article does conflate DSD decoding with The "remastering engine". Just cause it can decode it doesn't mean it can resample PCM into DSD. Those are 2 seperate features.