this post was submitted on 02 Aug 2023
58 points (100.0% liked)
Technology
104 readers
2 users here now
This magazine is dedicated to discussions on the latest developments, trends, and innovations in the world of technology. Whether you are a tech enthusiast, a developer, or simply curious about the latest gadgets and software, this is the place for you. Here you can share your knowledge, ask questions, and engage in discussions on topics such as artificial intelligence, robotics, cloud computing, cybersecurity, and more. From the impact of technology on society to the ethical considerations of new technologies, this category covers a wide range of topics related to technology. Join the conversation and let's explore the ever-evolving world of technology together!
founded 2 years ago
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Superconductors basically means you can run your PC's processor at 1% of its current energy draw. So now take a mobile phone processor, recreate it with superconductors, and you suddenly have a device that can do a massive amount of computations for years on a single AA battery
Not just that, but you also have things like MRI, CT, and PET imaging in the medical world that would suddenly not need liquid helium and nitrogen for operation. Scientific instruments like NMR and high resolution FT-MS machines will stop using all the liquid helium and nitrogen. It will save are rapidly disappearing helium resources and allow for that to be used for other things.
Then there is mass transit that can be developed. The list goes on.
Simple energy transmission. A room-temp superconductor has the potential to fundamentally change the entire electrical grid if it were even remotely scalable.
It's hard to overstate how immensely expensive and complex energy transmission currently is.
You aren't going to heat something to 127 °C with an AA battery.
The 127C is the critical temperature. With other superconductors, if you get the material below the critical temperature, its starts superconducting. From the descriptions I've seen, the meaning of critical temperature is the same with this material, so it should superconduct at 23C just fine, presuming it is a superconductor.
Most people don't consider 127 °C to be room temperature.
"Room temperature" in this context means "above 0 °C".
Correct. So why are you concerned with it not working at well over boiling water temperatures? This is about a room temperature superconductor. 127 °C is not room temperature.