this post was submitted on 02 Aug 2023
234 points (100.0% liked)

Science

13034 readers
20 users here now

Studies, research findings, and interesting tidbits from the ever-expanding scientific world.

Subcommunities on Beehaw:


Be sure to also check out these other Fediverse science communities:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 13 points 1 year ago

So would this mean that cpus would not generate heat?

Not quite. Charges undergoing acceleration and state transitions still generate EM radiation, and still lose energy. In a semiconductor, charges start moving, stop moving, and change direction all the time. So that form of energy loss & heat generation will continue.

In addition, the semiconductor itself is still a semiconductor, not a superconductor. To take advantage of the ability of a semiconductor to hold charges in specific states, there will be some heat losses.

But, a practical superconductor could be used to form all the interconnects in a PC board or the surface of a silicon chip device, providing an efficiency improvement.