this post was submitted on 16 Nov 2024
405 points (86.4% liked)
Science Memes
11047 readers
4152 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
only antimatter could provide more energy density, it's insanely powerful.
produces amounts of waste orders of magnitude lower than any other means of energy production
reliable when done well
it shouldn't be replaced with renewables, but work with them
Who gives a fuck about energy density beyond some physics nerds? Unless you're planning on building a flying nuclear-powered airplane, energy density is irrelevant. This is why solar is eating fission's lunch.
Nuclear energy indeed has very high energy per mass of fuel. But so what? Solar and wind power doesn't even use fuel. So the energy density thing is a bit of a distraction.
just compare 1 ton of fissile fuel and 1 ton of Silicon or steel. how much power do you get out of it ?
Who cares? We use economics to sort out the relative value of radically different power sources, not cherry-picked criteria. Fission boosters can say that nuclear has a small footprint. Solar boosters can say that solar has no moving parts and is thus more mechanically reliable. Fission boosters can say fission gets more power from the same mass. Solar boosters can point to the mass of the entire fission plant, including the giant concrete dome that needs to be strong enough to survive a jumbo jet flying into it.
In the end, none of this shit matters. We have a way of sorting out these complex multi-variable problems. Both fission and solar have their own relatives strengths and weaknesses that their proponents can cherry pick. But ultimately, all that matters in choosing what to deploy is cost.
And today, in the real world, in the year 2024, if you want to get low-carbon power on the grid, the most cost-effective way, by far, is solar. And you can add batteries as needed for intermittency, and you're still way ahead of nuclear cost-wise. And as our use of solar continues to climb, we can deploy seasonal storage, which we have many, many options to deploy.
The ultimate problem fission has is that it just can't survive in a capitalist economy. It can survive in planned economies like the Soviet Union or modern China, or it can run as a state-backed enterprise like modern Russia. But it simply isn't cost effective enough for fission companies to be able to survive on their own in a capitalist economy.
And frankly, if we're going to have the government subsidize things, I would much rather the money be spent on healthcare, housing, or education. A lot of fission boosters like fission simply because they think the tech is cool, not necessarily because it actually makes economic sense. I say that if fission boosters want to fund their hobby and subsidize fission plants, let them. But otherwise I am adamantly opposed to any form of subsidies for the fission industry.
What are you trying to say here? Are we still talking about fuel types here?
Again, let me point out that solar power does not consume any fuel. The materials used to construct the solar panels are not having any power extracted from them. And secondly, nuclear power plants require construction materials too. ... So I really don't know what kind of comparison you are asking for here.
But it's not done well. Just look at the new built plants, which are way over budget and take way longer to build then expected. Like the two units in Georgia that went from estimated 14bn to finally 34bn $. In France who are really experienced with nuclear, they began building their latest plant in 2007 and it's still not operational, also it went from 3.3bn to 13.2bn €. Or look at the way Hinkley Point C in the UK is getting developed. What a shit show: from estimated 18bn£ to now 47bn£ and a day where it starts producing energy not in sight.
The same problems faced the oil industry too, with their drilling rigs & refineries (over budget and over schedule, with gov money grants and subsidies), it's just less in the media & more spread out (more projects).
Also 10s of billions is still insignificant for any power, transport, or healthcare infrastructure in the scheme of things - we have the money, we just don't tax profit enough. And we don't talk about how the whole budget gets spent (private or public), where all the money actually goes, instead we get the highlighted cases everyone talks about. But not about the shielded industries when they fuck up.
Bullshit. If you can get the same amount of reliable power by just slapping up some solar panels, wind turbines, and batteries, then obviously the cost is not insignificant.
That sentence shows that you really aren't thinking about this as a practical means of power generation. I've found that most fission boosters don't so much like actual nuclear power, but the idea of nuclear power. It appeals to a certain kind of nerd who admires it from a physics and engineering perspective. And while it is cool technically, this tends to blind people to the actual cold realities of fission power.
There's also a lot of conspiratorial thinking among the pro-nuclear crowd. They'll blame nuclear's failures on the superstitious fear of the unwashed ignorant masses or the evil machinations of groups like Greenpeace. Then, at the same time, they'll ignore the most bone-headedly obvious cause of nuclear's failure: it's just too fucking expensive.
Do you know WHY they went over budget?
Yes, but energy density doesn't matter for most applications and the waste it produces is highly problematic.
85% of used fuel rods can be recycled to new fuel rods. And there's military uses for depleted uranium too. So, essentially every bit of the waste can be recycled. Can't say the same for fossil fuels.
"85% of used fuel rods can be recycled" is like "We can totally capture nearly all the carbon from burning fossil fuels and then remove the rest from the atmosphere by other means".
In theory it's correct. In reality it's bullshit that will never happen because it's completely uneconomical and it's just used as an excuse to not use the affordable technology we already have available and keep burning fossil fuels.
Capturing all the extra carbon from the atmosphere is not as expensive as it sounds like. It can easily be done by a few rich countries in very few decades once we stop adding more there every day.
Recycling nuclear waste is one of those problems that should be easy but nobody knows what the easy way looks like. It's impossible to tell if some breakthrough will make it viable tomorrow or if people will have to work for 200 years to get to it. But yeah, currently it's best described as "impossible".
What?
For starters, carbon capture takes an insane amount of power. And to follow up: we couldn't even build the facilities is "a few decades" even if we free power and infinite money.
Yep, "insane amounts" of power like you what you get by investing something like 1% of a few countries' GDP in PV panels.
Yeah, you're not making any sense. How is the recyclability of nuclear fuel rods an excuse to keep burning fossil fuels? That's a massive leap in logic that demands an explanation.
They’re saying that plausible uses don’t necessarily translate to real world use, in practice. I have no stake in this, just translating
While I understand where they're coming from, it should be noted that they're likely basing their experience with recyclability on plastic recycling which is totally a shit show. The big difference comes in when you realize that plastic is cheap as shit whereas uranium fuel rods are not.
It's a solved problem. https://www.youtube.com/watch?v=4aUODXeAM-k https://www.youtube.com/watch?v=lhHHbgIy9jU
If something is Nuclear enough it can generate heat, its just the reactors make use of an actual reaction that nuclear waste can't do anymore. Yever watch the Martian, he has a generator that's fuel is lead covered beads of radioactive material, it doesn't generate as much as reactors but it's still a usable amount.
That's an extreme oversimplification. RTGs don't use nuclear waste. Spent reactor fuel still emits a large amount of gamma and neutron radiation, but not with enough intensity to be useful in a reactor. The amount of shielding required makes any kind of non-terrestrial application impossible.
The most common RTG fuel is plutonium (^238^Pu, usually as PuO~2~), which emits mostly alpha and beta particles, and can be used with minimal shielding. It can't be produced by reprocessing spent reactor fuel. In 2024, only Russia is manufacturing it. Polonium (^210^Po) is also an excellent fuel with a very high energy density, but it has a prohibitively short half-life of just over a hundred days. It also has to be manufactured and can't be extracted.
^90^Sr (strontium) can be extracted from nuclear fuel, and was used by early Soviet RTGs, but only terrestrially because the gamma emission requires heavy shielding. Strontium is also a very reactive alkaline metal. It isn't used as RTG fuel today.
Right now we probably use more energy to produce antimatter than getting it back
Energy density is a useless bullshit metric for stationary power.
Produces more waste than almost all of the renewables.
Reliable compared to... ... ... ok, I'm out of ideas, they need shutdowns all the time. Seems to me it's less reliable than anything that isn't considered "experimental".
And it can't work with renewables unless you add lots and lots of batteries. Any amount of renewables you build just makes nuclear more expensive.
They are an interesting technology, and I'm sure they have more uses than making nuclear weapons. It's just that everybody focus on that one use, and whatever other uses they have, mainstream grid-electricity generation is not it.