this post was submitted on 22 May 2024
17 points (94.7% liked)
Daily Maths Challenges
189 readers
1 users here now
Share your cool maths problems.
Complete a challenge:
- Post your solution in comments, if it is exactly the same as OP's solution, let us know.
- Have fun.
Post a challenge:
- Doesn't have to be original, as long as it is not a duplicate.
- Challenges not riddles, if the post is longer than 3 paragraphs, reconsider yourself.
- Optionally include solution in comments, let it be clear this is not a homework help forums.
- Tag [unsolved] if you don't have a solution yet.
- Please include images, if your question includes complex symbols, attach a render of the maths.
Feel free to contribute to a series by DMing the OP, or start your own challenge series.
founded 6 months ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Now, I dunno nuffin' 'bout no Statistics Theory, but I was able to graph this as a branching tree in a way that made sense to me and brought myself to what I thought was a satisfying conclusion.
Typed Response
response
This is close, but you've got an off-by-one error where you calculate the probability of making it to the nth round as 1/2^n. Consider that that would imply you have a probability of 1/2 for the game to make it to round 1, or 1/4 to make it to round 2, etc - it should be 1/2^(n-1). Correcting this would give you the correct answers for P(B) and P(C).As for the dependence question, I'm not sure I followed your arguments there - but saying both are dependent is not correct.
im not sure i understand either. could you tell me what dependence and independence mean in this context? perhaps that is the source of my confusion. i understood it in a naive sense of one variable depending on the other for its outcome, and that whether the evens player wins is simply dependent on the number of the round. B therefore A and C therefore not A seem like tautological and equivalent dependencies(?) if i understand the question, and there is a good chance i do not. Ah, but i reread "at least" now, which changes everything.
Yes, i'm quite certain now: I do not understand.
also, how come i got the right probability for the players' winrate if my calculation of that was based on one over two to the n instead of the n minus one? Why didnt the off by one error carry forward giving the odds player the 1/3 chance and vice versa?
like i said, dont know nuffin.
In probability, two events are said to be independent if one event happening has no effect on the probability of another event happening. So coin flips, as an example, are independent - because when you flip a coin and get Tails, that doesn't affect the probability of the next coin flip also coming up Tails.
So in this context, asking if A and B are independent is asking: Does knowing the game lasts at least four turns change the probability of winning? And similarly for A and C. Does knowing the game lasts at least 5 turns change the probability that the game will end in a victory?
Rest of response
To be clear about your other answers, saying P(B) = 1/16 and P(C) = 1/32 are not correct - I was saying if you adjusted your formula, from 1/2^n to 1/2^(n-1), then your answers would be correct. So the probability of the game lasting at least four turns is 1/2^(4-1) = 1/2^3 = 1/8, and the probability of it lasting at least 5 turns is 1/2^(5-1) = 1/2^4 = 1/16.But I think you were more asking about why this didn't affect your win rate - that's because there's a subtle difference between "making it to the nth round" and "having the game end on the nth round" - and that difference is that once you make it to a round, you then have a 1/2 probability to end the game - which makes the probability of ending on the nth round the 1/2^n you used.